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Abstract Disease associated with the buildup of atherosclerotic plaque in the coronary arteries has a high 

mortality rate in the world.  The most common of these diseases is coronary artery disease. Contemporary 

procedures involve placing an implant known as a stent in the offending artery.  A stent acts as a scaffolding 

structure that holds and compresses the atherosclerotic plaque and reopens the diseased artery.  A common 

concern with coronary stents is mechanical failure due to cyclic pressures associated with the systolic and 

diastolic pressures of the heartbeat. A study of the coronary artery using finite element analysis is a good way to 

get a first-hand glimpse of the various stresses acting on it. A quarter and full model design and numerical 

analysis of a simple model of the coronary diseased artery is performed and the results show interesting stress 

variation across the layers of the artery. These results could impact stent design and analysis for future in-vitro 

studies. 
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1. Introduction 

The artery is a passageway that transports oxygen rich blood from the myocardium to the rest of the human 

body.  Myocardial infarction occurs when the heart muscle does not receive enough oxygen to properly 

function.  The cells in the myocardium then begin to die due to oxygen starvation. A healthy artery consists of 

three layers: the intima, the media, and the adventitia. The layers of the artery are composed of two major fibers: 

elastin and collagen. Elastin is a non-linear elastic material.  It has an incremental Young’s modulus of 3*10
5
 Pa 

at a strain of 40% [1]. Collagen is a stiffer material possessing a Young’s modulus of 10
8
 Pa at a strain of 3% to 

4% [1].  These two fibers act in tandem to give the artery its elastic and structural properties. The endothelium is 

a portion of the intima that contacts the blood.  The intima consists of collagen fibers. The intima is the thinnest 

layer of the artery and does not serve a significant role in the artery’s structural integrity. The media has 

different compositions throughout the human body.  Larger coronary arteries consist of elastin fibers [1]. These 

elastin fibers give larger arteries a high degree of elasticity. Smaller arteries are made up of smooth muscle as 

well as a matrix of elastin and collagen. Smaller arteries are less elastic than their larger counterparts. The 

adventitia is exclusively made up of collagen fibers. The adventitia is the arteries main structural component of 

the artery. Arteries are subjected to pre-tensioning stresses in the body which serve to tether the artery to the 

surrounding connective heart tissue. This in-vivo tethering allows the artery to move in both the radial and 

longitudinal directions [1]. It is well documented that an artery that is removed from the body will undergo a 

significant reduction of length [2]. The artery length can have a reduction of up to 50% the original length. This 

reduction indicates an in-vivo arterial pre-tensioning. Therefore, an artery removed from the body is said to be in 

a no-load state. Fung proposed that an artery placed in-vitro can be returned to its in-vivo state by stretching the 

artery along its central longitudinal axis [3]. The artery is a complex mechanical structure. The artery does not 

have a linear stress and strain relationship. Therefore, it is difficult to determine an exact Young’s modulus for 



May J & Nair R                                      Journal of Scientific and Engineering Research, 2018, 5(10):168-178 

 

Journal of Scientific and Engineering Research 

169 

 

the artery. An incremental Young’s modulus can be calculated using assumptions that the artery is an 

incompressible and isotropic material. Hasting provides means for calculating the incremental Young’s modulus 

for an artery based upon assumptions of pseudo-elasticity [1]. 
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Where: Ro is the outer artery radius, Riis the inner artery radius, ∆ Ro is the change in outer radius due to a 

pressure, ∆P is the change in pressure and 𝑣 is the Poisson’s Ratio. A more accurate view of the artery’s elastic 

nature can also be modeled using deformable continuum mechanics theory. The artery does not have a linear 

stress/strain relationship and can therefore be can be modeled as a hyperelastic solid. A hyperelastic solid can be 

defined using a strain density function based upon the principles stretches of the material. The basic form of the 

artery’s constitutive equation is shown below. 
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Where: U
def 

is the material strain density function, Cij is a material constant (the subscripts i and j describe the 

direction), I1 is the first Cauchy strain invariant, I2 is the second Cauchy strain invariant, D1 is the material 

compressibility factor, Jel is material elastic volume strain. The Cauchy stress invariants are defined in terms of 

the principle stresses.  The first and second Cauchy stress invariants can be defined as follows (λ is the principal 

stretch). 
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There are various components of an atherosclerotic plaque. One such component of plaque is the calcified 

plaque. Calcified atherosclerosis is associated with an aged lesion which tends to possess an increased collagen 

density similar to the collagen densities found in bone [4]. Calcification typically accumulates in the intima 

layer of the artery. The calcification leads to intimal thickening and hardening. The arterial calcification process 

is almost identical to that process found in the formation of bone. Osteopontitn and osteonectin have been found 

in calcified intima layers [5] and are minerals found in bone formation. Atherosclerotic plaque also consists of 

lipids. Lipids consist of crystalline cholesterol, cholesteryl, and phospholipids [6]. The lipid core of the 

atherosclerotic plaque forms through the accumulation of fatty streaks that are rich with lipid cells [7]. Lipid 

concentration can influence the intensity of the mechanical stresses within the atherosclerotic plaque.  A larger 

lipid core can lead to higher stresses within the plaque and artery [8]. The lipid concentration has been known to 

lead to a structure weakening of the arterial wall [9]. These stresses can then lead to plaque rupture and 

myocardial infarction. The lipid core forms between the fibrous cap and the intimal layer. A third component of 

atherosclerotic plaque is a fibrous cap. The fibrous cap is made up of smooth muscle tissue, extracellular 

material (collagen, proglycans, and elastin fibers) [6]. The fibrous cap covers the vulnerable lipid core and 

necrotic smooth cells [10]. Plaque rupture can occur if the fibrous cap is thin. The thin fibrous cap acts as a 

stress concentrator and thus can rupture under relatively low physiological forces. Significant research has gone 

into the study of arterial wall mechanics and intravascular stent response. Early and Kelly [11] studied the 

impact of arterial geometry and material properties on stents. The significance of this study was to define the 

mechanical properties of the intimal, medial, and adventitial layers of the artery wall and found that these layers 

are isotropic and incompressible. This nature can be defined by a third order Mooney-Rivlin strain energy 

function.  The strain density function developed by Early and Kelly [11] is given below. 
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Where: W is the strain energy function, C is a material constant, I1 is the first Cauchy strain invariant, and I2 is 

the second strain invariant. Further studies have also been done to investigate the mechanical properties of 

atherosclerotic plaques. Maher et al. studied the mechanical response of atherosclerotic plaques from fresh 

carotid arteries [12]. This study was performed on a total of fourteen atherosclerotic plaques which consisted of 

calcified, lipid, and fibrous atherosclerotic plaques. The plaques were found to be isotropic, incompressible 
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hyperelastic materials. The data from the study was fit to a second order polynomial hyperelastic strain energy 

function. 

           
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Where: W is the strain energy function, C is a material constant, I1 is the first strain invariant, and I2 is the 

second strain invariant. Cervera studied the impact of stenting of the behavior of the arterial wall [13]. He 

modeled the artery as an idealized, hollow cylinder that was stretched by 59% of its length in order to simulate 

axial tethering. Matlab was used to create parametric stent geometries. The stents were parameterized in order to 

include the best features from other stent designs and was used to optimize stent strut spacing, axial amplitude, 

and the stent’s curvature radius. The FEA study involved inflating the artery in order to provide luminal dilation.  

Each stent created through the parametric study were tested in the artery model and analyzed for critical 

stresses. It was found that stent geometry influences the magnitude of the stresses present in the arterial wall 

after stenting. The influence of pulse pressure and compression from the artery also led to an increase in stent 

hoop stresses [14]. Timmins et al. determined that the stent design not only affects the structure integrity of the 

stent but also the stress concentration in the artery. This finding indicated that there must be a compromise 

between stent structural integrity and arterial wall stresses [15]. The majority of these studies were performed on 

peripheral arteries that are subjected to bending and pulmonary arteries that are subjected to respiration.   

 

2. Mathematical Formulation of the Artery Design and Numerical Stress Analysis 

A three dimensional model of an artery and its stenotic plaque will also be created.  The artery and plaque will 

be modeled to represent the in-vivo physiological state.  This will involve using the FORTRAN programming 

language to develop an Abaqus
®
 subroutine that will model the artery’s hyperelastic behavior.  The specific 

subroutine will be an Abaqus
®

 Standard uhyper routine.  The uhyper routine allows for Abaqus
®
 to use complex 

compressible and incompressible hyperelastic material models.  This uhyper routine requires that partial 

derivatives of the hyperelastic strain energy function be defines with respect to the strain invariants [16 – 18].  

The subroutine will be tested using two dimensional arterial cross sections.The artery will be modeled in its in-

vitro phase.  Once an artery is removed from the body, it elastically recoils.  This recoil indicates that a stent 

removed from the body is in a no load stated and an artery that is in-vivo is in a loaded state [3].  The no load 

model of the stent will be axially stretched in order to simulated the artery’s in-vivo conditions. 

 

2.1. Artery and Atherosclerosis Mechanics and Modeling 

Early and Kelly found that the arterial layers (intima, media, and adventitia) can be modeled as an isotropic 

material [11].  Furthermore, Early and Kelly found that each respective layer exhibits an incompressible 

hyperelastic nature.  Maher et al. also found that fibrous, calcified, and lipid plaques can be modeled using an 

incompressible hyperelastic strain energy function [12].  The general form of the polynomial hyperelastic strain 

energy function is shown below [16 – 18]. 
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Where: U
def

 is the strain energy function, Cij is a material constant, I1is the first Cauchy stress invariant, I2is the 

second Cauchy stress invariant, D1 is the material compressibility factor, and Jel is the elastic volume strain or 

third Cauchy invariant (λu is the material principle stretch). The Cauchy invariants are defined using principle 

material stretches. 
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An incompressible hyperelastic material has a D1 value that is equal to zero.  This corresponds to a Poisson’s 

ratio of 0.5.  The Poisson’s ratio can be defined as shown in the following equation. 
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Where: v is the Poisson’s ratio, Ko is the bulk modulus, and µo is the shear modulus. The incompressibility is 

further defined using the third Cauchy invariant, Jel. The third invariant is equal to one in an incompressible 

hyperelastic solid.  The deformation gradient thus becomes: 
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The infinite deformation gradient leads to a solid that does not change volume when undergoing strain.The 

incompressibility of a hyperelastic solid can also be described using the principle stretches.  Lai et al. showed 

that an incompressible solid has an equilibrium state shown below [19]. 

 1 1 1x x  (2.6) 

 2 2 2x x  (2.7) 

 3 2 3x x  (2.8) 

Where: x is the longitudinal direction andλ is the principle stretch in the longitudinal direction. An 

incompressible solid possesses an equilibrium state between the first and second principle stretches. 

 
2
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This equilibrium state leads to an isochoric response in the material [19].  The isochoric response indicates no 

change in the material’s volume during stretch. Early and Kelly defined the artery layers using a third order 

Mooney-Rivlinhyperelastic function [11].  The Mooney-Rivlin strain energy function is a special case of the 

polynomial strain energy function.  The Mooney-Rivlin strain energy function is defined below.Table 1 shows 

the material constant values in megapascals (MPa). 
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Table 1: Artery Layer Hyperelastic Constants (MPa) [11] 

 C10 C01 C20 C11 C30 

Intima 0.08423 0.00505 1.5 0.76506 0.04238 

Media 0.00355 0.00066 0.02154 0.01868 0.01977 

Adventitia 0.00714 0.00063 0.00803 0.09579 0.09931 

 

Maher et al. defined the atherosclerotic plaque using a second order polynomial strain energy function 

[12].Table 2 contains the material constants for three varieties of atherosclerotic plaque in MPa. 
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Table 2: Atherosclerotic Plaque Hyperelastic Constants (MPa) [12] 

 C10 C01 C20 C11 C30 

Fibrous 0.00753 0.00999 0.02063 0.00039 0.00078 

Lipid 0.00116 0.01168 0.00858 0.0006 0.00022 

Calcified 0.001144 0.01357 0.06238 0.02626 0.00761 
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A FORTRAN subroutine was written in order to implement the aforementioned strain energy functions in 

Abaqus
®
.  In particular, auhyper routine was written to model the hyperelastic nature of the artery and plaque.  

The Abaqus
®
 manuals recommend that incompressible materials be modeled as nearly incompressible [16-18].  

A bulk modulus to shear modulus ratio of 10,000 was used to model a nearly compressible behavior.  A bulk to 

shear modulus ratio of 10,000 leads to a Poisson ratio of 0.4995.  A fully incompressible hyperelastic solid has a 

Poisson ratio of 0.5.  Therefore, a Poisson ratio of 0.49995 has some compressibility. 
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A bulk modulus to shear modulus ratio of 10,000 led to an approximate Poisson’s ratio of 0.49995.  Therefore, 

the material compressibility factor (D1) became non zero.  The compressibility factor for each arterial layer and 

atherosclerotic plaque were recalculated to obtain a nearly incompressible hyperelastic response.  The 

compressibility factor is a function of the material’s Poisson’s ratio and the linear components of the strain 

energy function (C10 and C01).Table 3 shows the D1 values for each artery layer and plaque component. 
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Table 3: Hyperelastic Compressibility Factors (MPa) 

Component D1 Value 

Intima 0.000008928 

Media 0.000000421 

Adventitia 0.00000077 

Calcified 0.0000014714 

Lipid 0.000001284 

Fibrous 0.000001752 

 

The uhyper subroutine also required that partial derivatives with respect to the strain invariants (I1, I2, and Jel) be 

calculated.  The partial derivatives defined the elastic response of the strain energy function.  These partial 

derivatives are 
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are the partial derivatives for the artery’s Mooney-Rivlin strain energy function.  The uhyper subroutine ignores 

any partial derivative that is equal to zero.  Therefore, these partial derivatives are ignored in the following 

calculations. 
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The partial derivatives for the plaque components were calculated.  The plaque components were modeled using 

a second order polynomial hyperelastic strain energy function. 
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3. Design Modeling and Finite Element Analysis  

The equations developed in the previous section were compiled into a FORTRAN subroutine. The subroutine 

was tested using a combination of two dimensional and three dimensional artery models. A two dimensional 

quarter model was first created in order to test the subroutine and boundary condition assumptions.  The artery 

was modeled in relation to the left anterior descending artery (LAD). Suter et al. prescribed artery layer 

thickness to lumen diameter ratios [21]. The LAD was modeled using the mean lumen diameter of 4.38 mm.  

The artery was also modeled using the mean outer diameter of 5.45 mm. Holzapfel et al. investigated the ratio of 

artery layer thickness to artery wall thickness [22]. It was found that ratios for the adventitia, media, and intima 

were 0.4, 0.36, and 0.27 respectively. These ratios were used to model the artery layer thicknesses. A two 

dimensional quarter model of the diseased artery was created by adding a calcified intima, lipid core, and 

fibrous cap.  Figure 1 illustrates the quarter model. 

 
Figure 1: Artery quarter model (green is adventitia; brown is media; blue is intima; white is calcified plaque; 

grey is lipid core plaque; red is fibrous cap plaque) 

 



May J & Nair R                                      Journal of Scientific and Engineering Research, 2018, 5(10):168-178 

 

Journal of Scientific and Engineering Research 

174 

 

The model was meshed using a global seed factor of 0.05. The mesh used CPS4 shell elements. A boundary 

condition of U2 equals zero was applied to the nodes along the x axis. Boundary conditions of U1 equals zero 

were applied to nodes along the y axis.  A boundary condition on degree of freedom U1 is synonymous with the 

X axis while U2 is synonymous with the Y axis. A pressure of 0.013 MPa was applied to the lumen surface of 

the model. This pressure corresponded to the mean blood pressure through the artery. Figure 2 shows the mesh 

and boundary conditions. 

 
Figure 2: Quarter model mesh and boundary conditions 

The quarter model was also extended to a two dimensional full model. The same meshing and boundary 

conditions were applied to the full model. Figure 3 shows the boundary conditions for the model. 

 
Figure 3: Full model mesh 

It is well known that an in-vivo artery is in a loaded stated [3]. A healthy artery can be stretched up to 50% of its 

original in-vitro length. This in-vivo tethering allows the artery to evenly distribute the blood pressure along the 

endothelium. Fox et al. showed that the LAD can have a length of 32 mm [22]. Therefore, an in-vivo LAD is 

stretched by 50%; adding a 16 mm to the total length. A three dimensional model of the LAD was created using 

the in vitro length of 32 mm. Displacement boundary conditions of 8 mm were applied in the axial direction.  

These boundary conditions were applied on both the proximal and distal faces of the artery. Symmetry boundary 

conditions were also applied to the nodes along the x axis and y axis. Hybrid mesh elements were used to mesh 

the artery. Hybrid elements enforce a Poisson’s ratio of 0.5 in the stiffness matrix. This helped to model the 

incompressible nature of the arterial wall layers. C3D8H eight node solid brick elements were used to capture 

the stresses induced by arterial tethering. Figure 4 shows the three dimensional model with the prescribed 

boundary conditions. 
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Figure 4: Arterial tethering mesh and boundary conditions 

 

4. Results and Discussion  

The stresses induced by the mean blood pressure is shown is Figure 5. This quarter model von Mises plot show 

an uniform circumferential distribution of stress radiating outside with the highest intensity seen in the middle as 

expected and gradually reducing. The middle part of the artery layer adventitia sandwiched between the other 

two layers seems to generate a lot more stress compared to the other layers.   

 
Figure 5: Quarter model von Mises stress (MPa) 

 
Figure 6: Full model von Mises stress (MPa) 

Figure 6 shows the Von Mises stresses for a full model. The pattern seen above in figure 5 is repeated here as 

expected. 
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Figure 7: In-vivo arterial layer residual stresses (MPa) 

Von Mises stresses (figure 7) and nodal displacement (figure 8) was monitored to determine the residual state of 

the in-vivo artery as a three-dimensional model. The in-vivo artery residual stresses clearly indicate the majority 

of the stresses pocketed deep within the inside diseased plaque layers. Clearly these inside layers are much 

brittle and certainly far away from a hyperelastic material property regime, and the presence of these residual 

stresses increases the gravity of the situation by causing problems during stent insertion, restenosis, thrombosis 

and myocardial infraction. 

 
Figure 8: Tethered artery displacement 

With regards to the nodal displacements, the von Mises stress was contained within the load bearing adventitia 

and media layers. The thin intimal layer also had stress concentration. The nodes on the front and back faces of 

the artery were displaced using a displacement boundary condition in the X direction. The nodes on the front 

face were displaced 8 mm and the nodes on the back face were displaced negative 8 mm. A mean pressure of 

0.013 MPa was applied to the tethered artery model. The boundary and mesh conditions from the tethering 

model were obtained in order to model the in-vivo state. Figure 13 illustrates the blood pressure induced 

stresses. 

 
Figure 9: Arterial stresses due to blood pressure (MPa) 
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Figure 10: Stresses along the arterial lumen due to blood pressure 

The blood pressure induced a localized stress within the intimal layer. As it is known, the intima serves to 

isolate the blood from the media and adventitia. The artery model showed the axial load bearing nature of the 

adventitia and media.  It also indicated the blood pressure regulating nature of the intima. 

 

5. Conclusions 

Diseased coronary artery with the three layers of arterial tissue (intima, media and adventitia) and the three 

layers of plaque (lipid core, fibrous core, calcified plaque) was modeled by using Mooney-Rivlin equations and 

various subroutines like ‘uhyper’ using the finite element software Abaqus. These equations were used to get 

material properties of hyperlelastic material like the artery with important material constants and other relevant 

information from the literature that has used in-vitro studies to come up with the most accurate results. Quarter 

model, full 2D model and a full 3D model of the diseased artery was constructed with good approximation and 

meshed with a reasonably accurate mesh size and boundary conditions based on an in-vivo mode. Some of the 

interesting conclusions from the study are as follows. The quarter model shows the value of von Mises stresses 

to be in reasonably good agreement with literature displaying a maximum of 0.03 MPa in the inside intima layer 

and average of 0.013 MPa throughout the model. It can also be seen that the stress variation shows a gradual 

decline towards the outside in a radiating pattern. The only exception is the inside adventitia layer that shows an 

increased stress concentration compared to its surrounding layers. It is hypothesized that the material property of 

adventitia and its interaction with the other two arterial layers causes this phenomenon. The full2D model shows 

the value of von Mises stresses to be in reasonably good agreement with literature displaying a maximum of 

0.032 MPa in the inside intima layer and average of 0.013 MPa throughout the model. It can also be seen that 

the stress variation shows a gradual decline towards the outside in a radiating pattern. The only exception is the 

inside adventitia layer (like for the quarter model) that shows an increased stress concentration compared to its 

surrounding layers. It is hypothesized that the material property of adventitia and its interaction with the other 

two arterial layers causes this phenomenon. The full 2D model is a little more accurate than the quarter model. 

For the 3D model, the in-vitro displacement and residual stresses show a similar pattern as the quarter and the 

2D model, but with a better accuracy as expected. Since a displacement condition was applied here based on 

realistic scenarios as explained in the literature, arterial stresses along the lumen around 8 MPa was achieved. 

This study has shown a realistic view on a diseased artery and the stresses and displacements that are commonly 

seen. 
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