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AbstractLet p be a given prime number and K be a given odd integer. Using N (Pk) to denote the number of
the integral points (X, £ y) with y > 0 on the elliptic curve E : y2 =x*+ pkx. By using the properties of
Diophantine equation, the author proved that N (P*) < 2 beside N(3) =3 and N(3""°) =4, where s is

nonnegative integer.
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1. Introduction
Let P, P be the set of all integers and the set of positive integers respectively. In recently decades, the arithmetic
properties of elliptic curve has become the interesting research issue in the number theory and its related field.

Let p be a given prime number and K be a given positive integer. The papers [1-4] discussed integral points
(X, y) of the following elliptic curve:

E:y>=x+p*x. (1.1)

In this paper, by using the properties of the Diophantine equation, we will study the problem of the case that k

be the given positive odd numbers.
For the integral points (X,Y) of (1.1), if y =0, we call the trivial integral point, otherwise we call the

nontrivial integer point. Obviously, (1.1) only has the trivial integral point (X, y) = (0,0). On account of that,
if (X,Y) is the nontrivial integer point of (1.1), then (X,-y) also is the nontrivial integer point of (1.1). So we
will write that with together, which denote by (X,+Yy), where y > 0. LetSbe a nonnegative integer and
a > 1be a positive integer. This paper will determined all the nontrivial integer points of (1.1) under the case
that K be the given positive odd numbers, that is:

Theorem 1.1. For the positive odd numbers K ,the elliptic curve (1.1) only has the following nontrivial integer
points :

() p=2,k=4s+3, (x, £y)=(2*,£2%-3) and (2*°,42%".3)

( p=3k=1(x,ty)=(1,%£2),(3,6) and (12,+42).

(I p=3k=4s+5, (x,+£y) = (3°-121,+3*.1342), (3*?,£3**%. 2),
(3%, +£3%".2) and (3%*°-4,£3%".14).

(V) p=2a’+Lk =4s+1(xxy) = (p*a*+tp*a(@® +1).
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(V) p>3k=n(mod4),(x,ty) =(p* ™Y 2 £p®MXY), where (X,Y,n)is the solution of the
equation

XZ-p"Y*=1X,Y,neN, 2/n. (1.2)

Assume that N(PK) is the class number of nontrivial integer points (X,%Y)on the elliptic curve (1.1).
According to above theorem, we have the upper bound of N (PK) as follows.

Corollary 1.1. For the positive odd numberk , when p =2,

2, if k=3(mod4),
0, otherw se;

N(2“) = {
when p is odd number,

=4, if p=3k=>5 and k =1(mod4),
N(p“)<=3 if p=3 and k=1,
<2, otherw se.

2.The Lemmas

Let D be an non-square positive integer, and from the Theorem 10.9.1 and Theorem 10.9.2 of [5], it is easy to
know the equation
U?-DpV: =1 UVEN (2.1)

has the solution (u,V), and has an unique solution (U,,V,) which satisfies U, +Vv;~/D <u+v+/D, here

(u,V) is any solution of above equation. Such (ul,vl) be called the minimal solution of equation (2.1).

Lemma 2.1. The equation
X2-DY’=1 X, YEN (2.2)

has no more than two group solution (X,Y). If the equation has two group solution (X;,Y;) and (X,,Y,)
satisfying X, < X,, thenwhen D #1785 or 28560, there will be

(X, Y2) = (u,v,), (X,,Y7)= (U +Dv,2uy,), (2.3)

where (U;,V,) is the minimal solution of equation (2.1).

Proof. It can refer to Lemma 2 of [6], so we omit it.

Lemma 2.2 For given M e {1,3}, if p=2, then the equation

X2—pmvt=1 X,YEN (2.4)

has a solution (X,Y)=(3, 1) when m=3 ; If p=3, then (2.4) has the solutions (X,Y)=(2, 1) and
(X,Y)= (7, 2) when m=1;If p>3, then (2.4) hasno more than a group solution (X,Y).

Proof. According to all the given solution of (2.2) in [7] for D <400, we can know that the lemma holds for
the case p < 3.For p >3, by p™ #1785 or 28560, thus from Lemma 2.1, we know: if equation (2.4) has
two group solution (X,,Y;) and (X,,Y,) such that X, < X,, then it satisfy (2.3), where (U;,V;) is the
minimal solution of equation

U?-pm™v:=1 UVEN (2.5)
From (2.3), we have v, =Y,” and

2uV, =2u,Y, =Y, (2.6)
G N
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By (2.6), we get

w = 2a%Y, = 2aY¥;,a € N (2.7)
Therefore, from (2.5) and (2.7), it is easy to know
uZ —p"v: =4a‘-pny =1 (2.8)
As p is an odd prime number and ged(2a® +1,2a* —1) =1, thus from (2.8), we have
2a> + A =b*2a* -1 =p™c" Y, =bc,A € {+1},b,cEN (2.9)

However, from [8], the first equality of (2.9) didn't hold for A =1; and from [9], it hold for A = -1 under
a=b=1. Moreover, from the second equality of (2.9), we have pm =3, but which contradict with the
assumption p >3, then equation (2.5) has no more than one group solution. The proof is complete.

Lemma 2.3. The following equation
1+2X?=Y",X,Y,n€N, n>12+4n (2.10)
only has a solution (X,Y,n)=(11,35).

Proof. Please refer to [10].
Lemma 2.4. The equation
X?—Y*=p",X,Y,nEN, gcdiX,Y)=1,21tn (2.11)

only has the solutions (p,n, X,Y)=(2,3,3,1), (3,5,122,11) and (2a® +11,a* +1,a), wherea is a
position integer.

Proof. Assume that (p,n, X,Y) is a group solution of (2.11). If p=2, as X and Y are relatively prime
positive odd numbers, thusged(X +Y 2, X =Y?)=2, and from (2.11), we have X +Y? =2"" and
X —=Y? =2, then

X=2"%41, Y?=2"7 1. (2.12)

Because of Y®+1=2(mod4), and from (2.12), it can obtain that there is only a solution
(p,n, X,Y)=(2,331).

If pis an odd prime number, as X and Y are relatively prime positive odd numbers, and one is odd and

n

another is even, thus god(X +Y?,X =Y?)=1, and from (2.11), we get that X +Y? =p"
X -Y?=1and

2X =p"+1, 2Y?=p" -1. (2.13)

By 2)( N, and according to Lemma 2.3 and (2.13), we can know that the equation (2.11) only has the solutions
(p,n, X,Y)= (35122,11) and (2a® +1,1,a* +1,a). The proof of Lemma is complete.

3. The Proof of Theorem
The proof of Theorem 1.1. Let (X, = y) be a group nontrivial integer points on elliptic curve (1.1),asy > 0,

thus X > 0. Moreover, X can be expressed only as follows:
x=p'z,r€Z r=0,z€EN,ptz (3.1)
Substitute (3.1) into (1.1), which implies
2r,2 k 2
p'z(pTz®+p ) =y". (3.2)
As K is a position odd number, thus K # 2r , therefore, we only need to consider the following two cases:

Case I:k > 2r
Now, from (3.2), we have

p3rz(22 + pk—Zr) — yZ . (33)
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As pl z, thus pl 2%+ p“? and ged(z, 22 + p“ ") =1, soby (3.3), it can obtain
r=2s,z=f%z22 +pt T =g?,y=p3fgs€Zs>0, fgeN,gcd( f,g)=1. (3.4)
From (3.4), we have
g’ —ff=p" (35)
If p =2, according to Lemma 2.4, and from (3.5), it is easy to know kK —4s=3, f =1 and g =3, thus
from (3.4), we have

p=2, k=4s+3, (x,xy)=(2%£2%.3) (3.6)
If pisan odd number, according to Lemma 2.4, by (3.4) and (3.5), we get
p=3, k=4s+5, (x+y)=(3*-121,+3% -1342) 3.7)
and
p=2a’+1, k=4s+1, (x,xy)=(p*a’+p*a(a’+1)) (3.8)
Case Il: kK < 2r
In this case, from (3.2), we have

r+k 2r-k 52 g2
pTz(p* Tz +) =y°. (3.9)

As pl z(p**z? +1) and ged(z, p¥ 2?2 +1) =1, thus from (3.9), we get
+1=9°%,y=p'fg,t,f,ge N,ged( f,g) =1 (3.10)

2r-k 2
z

r+k=2t,z=1%p
And by (3.10), we have

gz _ er—kf4 -1 (3.11)
From (3.11), we can know that the equation (1.2) has a solution (X,Y,n) such that

Because of the first equality of equation (3.10), it is easy to know I is a position odd number, thus
r=25+1, where S is a nonnegative integer. Moreover, by (3.12), we have N=2r —K , thus from
n=2r—k=2-k(mod4), we get k =n(mod4). Therefore, according to the Lemma 2.2, and from
(3.10), (3.11) and (3.12), we obtain that there are only the integer points:

p=2, k=4s+3, (xty)=(2%"+£2%"7.3) (3.13)
p=3, k=4s+1, (x,xy)=(3*"+3*".2) (3.14)
p=3, k=4s+1, (xxy)=(3""-4,£3*".14) (3.15)

and the integer points of Type (V).

Finally, from the equation (3.6) and (3.13), we have the integer points of Type (1) ; Let @a=1 and s=0 in
(3.8), and a=1, s=0 in (3.14) and (3.15). We can get the integer points of Type (Il) ; Let a=1, s>1
in (3.8) and let S >1in (3.14) and (3.15), then combine with (3.7), it can obtain the integer points of Type (I11)
: Let @ >1 in (3.8), we have the integer points of Type (IV). To sum up above discussion, which complete the
proof of theorem.

Proof of Corollary 1.1. From Theorem 1.1, we can immediate obtain that the corollary holds for p < 3. If
p >3, assume that N,, N, are group count which belong to Type (IV) and Type (V) respectively for
nontrivial integer points of elliptic curve. Obviously, from the theorem of this paper, we have

N(P*) = Ny +Ng. 19
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As p be given, so when p =2a”+1, where a is also be given, then N, <1.Moreover, ask be given and

from Lemma 2.2, we have N <1. Thus from (3.16), we get N( pk) < 2. The proof of corollary is complete.
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