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AbstractLet p be a given prime number and k  be a given odd integer. Using )( kPN  to denote the number of 

the integral points ( , )x y  with 0y  on the elliptic curve xpxyE k 32: . By using the properties of 

Diophantine equation, the author proved that 2)( KPN ,beside 3)3( N  and 4)3( 54 sN , where s  is 

nonnegative integer. 
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1. Introduction 

Let P, P be the set of all integers and the set of positive integers respectively. In recently decades, the arithmetic 

properties of elliptic curve has become the interesting research issue in the number theory and its related field. 

Let p be a given prime number and k  be a given positive integer. The papers [1-4] discussed integral points 

),( yx  of the following elliptic curve: 

2 3: .kE y x p x          (1.1) 

In this paper, by using the properties of the Diophantine equation, we will study the problem of the case that k  

be the given positive odd numbers. 

For the integral points ),( yx  of (1.1), if 0y , we call the trivial integral point, otherwise we call the 

nontrivial integer point. Obviously, (1.1) only has the trivial integral point )0,0(),( yx . On account of that, 

if ),( yx  is the nontrivial integer point of (1.1), then )-,( yx  also is the nontrivial integer point of (1.1). So we 

will write that with together, which denote by ),( yx  ，where 0y . Let s be a nonnegative integer and 

1a  be a positive integer. This paper will determined all the nontrivial integer points of (1.1) under the case 

that k  be the given positive odd numbers, that is: 

Theorem 1.1. For the positive odd numbers k ,the elliptic curve (1.1) only has the following nontrivial integer 

points： 

(I) 
2 32, 4 3, ( , ) (2 , 2 3)s sp k s x y       and 

2 3 3 3(2 , 2 3)s s    

(II) 3, 1,( , ) (1, 2),(3, 6) (12, 42)p k x y       and . 

(III)
2 3 2 2 3 33, 4 5, ( , ) (3 121, 3 1342), (3 , 3 2),s s s sp k s x y             

2 3 3 4(3 , 3 2)s s   2 3 3 4(3 4, 3 14)s s   and . 

(IV) ))1(,(),(,14,12 23222  aapapyxskap ss
. 
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(V) 
( )|2 2 (3 )|43, (mod4),( , ) ( , ),k n k np k n x y p Y p XY       where ( , , )X Y n is the solution of the 

equation 

 nYXYpX n ,,,142
N， 2 n .                      (1.2) 

Assume that )( KPN  is the class number of nontrivial integer points ),( yx  on the  elliptic curve (1.1). 

According to above theorem, we have the upper bound of )( KPN  as follows. 

Corollary 1.1.  For the positive odd number k ，when 2p ， 

2 3(mod 4)
(2 )

0

k
k

N


 


，i f  ，

，ot her wi se;
 

when p is odd number， 

4 3, 5 1(mod 4)

( ) 3 3 1

2

k

p k k

N p p k

   

  


，i f   and ，

，i f   and ，

，ot her wi se.

 

2.The Lemmas 

Let D  be an non-square positive integer, and from the Theorem 10.9.1 and Theorem 10.9.2 of [5], it is easy to 

know the equation 

𝑈2 − 𝐷𝑉2 = 1      𝑈, 𝑉 ∈ 𝑁       (2.1) 

has the solution ),( vu ，and has an unique solution ),( 11 vu  which satisfies DvuDvu  11
，here 

),( vu  is any solution of above equation. Such ),( 11 vu  be called the minimal solution of equation (2.1). 

Lemma 2.1.  The equation 

𝑋2 − 𝐷𝑌2 = 1      𝑋, 𝑌 ∈ 𝑁       (2.2) 

has no more than two group solution ),( YX . If the equation has two group solution  ),( 11 YX  and ),( 22 YX  

satisfying 21 XX  ，then when D 1785 or 28560，there will be 

),( 2

11 YX ),( 11 vu ， ),( 2

22 YX )2,( 11

2

1

2

1 vuDvu  ，    (2.3) 

where ),( 11 vu  is the minimal solution of equation (2.1). 

Proof. It can refer to Lemma 2 of [6], so we omit it. 

Lemma 2.2  For given  3,1m ，if 2p ，then the equation 

𝑋2 − 𝑝𝑚𝑌4 = 1      𝑋, 𝑌 ∈ 𝑁       (2.4) 

has a solution ),( YX =(3，1) when 3m ；If 3p ，then (2.4) has the  solutions ),( YX =(2，1) and 

),( YX =（7，2） when 1m ；If 3p ， then (2.4) has no more than a group solution ),( YX . 

Proof. According to all the given solution of (2.2) in [7] for 400D , we can know that the lemma holds for 

the case 3p .For 3p , by mp 1785 or 28560，thus from Lemma 2.1, we know: if equation (2.4) has 

two group solution ),( 11 YX  and ),( 22 YX  such that 21 XX  ，then it satisfy (2.3)，where ),( 11 vu  is the 

minimal solution of equation 

𝑈2 − 𝑝𝑚𝑉2 = 1      𝑈, 𝑉 ∈ 𝑁       (2.5) 

From (2.3), we have 
2

11 Yv   and  

2

2

2

1111 22 YYuvu          (2.6) 
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By (2.6), we get 

𝜇1 = 2𝑎2, 𝑌2 = 2𝑎𝑌1 , 𝑎 ∈ 𝑁       (2.7) 

Therefore, from (2.5) and (2.7), it is easy to know 

14 4

1

42

1

2

1  Ypavpu mm
.                            (2.8) 

As p is an odd prime number and 1)12,12gcd( 22  aa ，thus from (2.8), we have 

2𝑎2 + 𝜆 = 𝑏4, 2𝑎2 − 𝜆 = 𝑝𝑚𝑐4 , 𝑌1 = 𝑏𝑐, 𝜆 ∈  ±1 , 𝑏, 𝑐 ∈ 𝑁   (2.9) 

However, from [8], the first equality of (2.9) didn't hold for 1 ; and from [9], it hold for 1-  under 

1 ba . Moreover, from the second equality of (2.9), we have 3mp ，but which contradict with the 

assumption 3p ，then equation (2.5)  has no more than one group solution. The proof is complete. 

Lemma 2.3.  The following equation 

1 + 2𝑋2 = 𝑌𝑛 , 𝑋, 𝑌, 𝑛 ∈ 𝑁, 𝑛 > 1, 2 ∤ 𝑛           (2.10) 

only has a solution )5,3,11(),,( nYX . 

Proof. Please refer to [10]. 

Lemma 2.4.  The equation  

𝑋2 − 𝑌4 = 𝑝𝑛 , 𝑋, 𝑌, 𝑛 ∈ 𝑁, gcd⁡(𝑋, 𝑌) = 1, 2 ∤ 𝑛      (2.11) 

only has the solutions ( , , , ) (2,3,3,1), (3,5,122,11)p n X Y   and ),1,1,12( 22 aaa  ，where a  is a 

position integer. 

Proof. Assume that ),,,( YXnp  is a group solution of (2.11). If 2p ，as X and Y are relatively prime 

positive odd numbers，thus 2),gcd( 22  YXYX ，and from (2.11), we have 
12 2  nYX  and 

22 YX ，then 

12 2  nX ， 12 22  nY .                         (2.12) 

Because of ),4(mod212 Y  and from (2.12), it can obtain that there is only a solution 

)1,3,3,2(),,,( YXnp . 

If p is an odd prime number，as X and Y are relatively prime positive odd numbers，and one is odd and 

another is even, thus 1),gcd( 22  YXYX ， and from (2.11), we get that 
npYX  2

, 

12 YX  and  

12  npX ， 12 2  npY .                           (2.13)  

By 2 n ，and according to Lemma 2.3 and (2.13), we can know that the equation (2.11) only has the solutions 

),,,( YXnp =（3,5,122,11) and ),1,1,12( 22 aaa  . The proof of Lemma is complete.  

 

3. The Proof of Theorem 

The proof of Theorem 1.1. Let ( , )x y  be a group nontrivial integer points on elliptic curve (1.1),as 0y , 

thus 0x . Moreover， x  can be expressed only as follows: 

𝑥 = 𝑝𝑟𝑧 , 𝑟 ∈ 𝑍, 𝑟 ≥ 0, 𝑧 ∈ 𝑁, 𝑝 ∤ 𝑧.      (3.1) 

Substitute (3.1) into (1.1), which implies  

222 )( ypzpzp krr  .                            (3.2) 

As k is a position odd number, thus rk 2 ，therefore, we only need to consider the following two cases: 

Case I: rk 2  

Now, from (3.2), we have 

2223 )( ypZZp rkr  
.     (3.3) 
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As p z ，thus p
rkpz 22   and 1),gcd( 22   rkpzz ，so by (3.3), it can obtain  

𝑟 = 2𝑠, 𝑧 = 𝑓2, 𝑧2 + 𝑝𝑘−2𝑟 = g2 , 𝑦 = 𝑝3𝑠𝑓g, 𝑠 ∈ 𝑍, 𝑠 ≥ 0, 𝑓,g ∈ 𝑁 1),gcd(, gf
 `

  (3.4) 

From (3.4), we have  

skpfg 442       (3.5) 

If 2p , according to Lemma 2.4，and from (3.5), it is easy to know 4 3, 1 3k s f g    and , thus 

from (3.4), we have  

2p ， 34  sk ， )32,2(),( 32  ssyx    (3.6) 

If p is an odd number, according to Lemma 2.4，by (3.4) and (3.5), we get  

3p ， 54  sk ， )13423,2113(),( 32  ssyx    (3.7) 

and  

12 2  ap ， 14  sk ， ))1(,(),( 2322  aapapyx ss
   (3.8) 

Case II: rk 2  

In this case, from (3.2), we have  

222 )1( yzpzp krkr 
.     (3.9) 

As p )1( 22  zpz kr
 and 1)1,gcd( 22  zpz kr

，thus from (3.9), we get  

,,1,,2 2222 fgpygzpfztkr tkr  
𝑡, 𝑓, g ∈ 𝑁 1),gcd(, gf  (3.10) 

And by (3.10), we have 

1422   fpg kr
.                               (3.11) 

From (3.11), we can know that the equation (1.2) has a solution ),,( nYX  such that  

)2,,(),,( krfgnYX  .                          (3.12) 

Because of the first equality of equation (3.10), it is easy to know r  is a position odd number，  thus

12  sr , where s is a nonnegative integer. Moreover, by (3.12), we have krn  2 ， thus from 

2 2 (mod4)n r k k    , we get )4(modnk  . Therefore, according to the Lemma 2.2，and from 

(3.10), (3.11) and (3.12), we obtain that there are only the integer points: 

2p ， 34  sk ， )32,2(),( 3332   ssyx    (3.13) 

3p ， 14  sk ， )23,3(),( 1312   ssyx    (3.14) 

3p ， 14  sk ， )143,4.3(),( 1312   ssyx    (3.15) 

and the integer points of Type (V). 

Finally, from the equation (3.6) and (3.13), we have the integer points of Type (I)；Let 1 0a s  and  in  

(3.8)，and 1 0a s ,   in  (3.14) and (3.15). We can get the integer points of Type (II)；Let 1 1a s ,   

in (3.8) and let 1s in (3.14) and (3.15)，then combine with (3.7), it can obtain the integer points of Type (III)

；Let 1a  in (3.8), we have the integer points of Type (IV). To sum up above discussion, which complete the 

proof of theorem. 

Proof of Corollary 1.1. From Theorem 1.1, we can immediate obtain that the corollary holds for 3p . If 

3p , assume that 4 5N N,  are group count which belong to Type (IV) and Type (V) respectively for 

nontrivial integer points of elliptic curve. Obviously, from the theorem of this paper, we have 

54)( NNpN k  .                           (3.16) 
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As p be given, so when 12 2  ap ，where a  is also be given，then 14 N . Moreover, as k  be given and 

from Lemma 2.2, we have 15 N . Thus from (3.16), we get 2)( kpN . The proof of corollary is complete. 
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