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Abstract The operation of a particular component in deteriorating condition will cause a high machine stop 

time. This is due to the damage of component at unexpected time. This causes increase cost of maintenance and 

production lost. One of the solutions to this matter is to use Preventive Replacement (PR). PR is one of the 

maintenance optimization strategies that can balance the failure cost in unexpected time (maintenance and 

production lost) and maintenance benefits (minimize downtime) for a deteriorating component. However, the 

objective of this paper is to introduce the PR strategy for determining an optimal replacement time for 

component that deteriorates over time for vehicle bi-fuel engine. The combined exhaust emission and vibration 

acceleration signatures were used as predictors, while the level of engine lubricant oil was considered a fault. 

Smart phone sensors was used for the vibration acceleration signals record mounted upon the engine valve 

cover. The AGE-200 gas analyzer is used for measure the exhaust emission components values. This data 

processed to estimate the failure time and investigate the maintenance cost. The models are used for the cost per 

unit time based on the stochastic behavior of the assumed system. The model reflects the cost of storing a spare 

as well as the cost of system downtime. The minimum-cost (optimum) policy time was calculated with the 

consideration of availability. It is noted that all maintenance cost results converge to the optimal value of the age 

replacement policy which has the same configuration. Moreover, the combined exhaust emission and vibration 

acceleration signatures corresponding to the failure rate values computed based on the Weibull distribution with 

assured reliability can be considered to be guide for maintenance regime. 

 

Keywords Prognostic, deterioration preventive maintenance, availability limit, maintenance cost optimization, 

compressed natural gas and gasoline 

Introduction 

Reliability has always been an important aspect in the assessment of industrial products and/or equipments. 

Good product design is of course essential for products with high reliability. However, no matter how good the 

product design is, products deteriorate over time since they are operating under certain stress or load in the real 

environment, often involving randomness. Maintenance has, thus, been introduced as an efficient way to assure 

a satisfactory level of reliability during the useful life of a physical asset.  

The available literature that focuses on the machine prognostics was presented. Generally, prognostic models 

can be classified into four categories: physical model, knowledge-based model, data-driven model, and 

combination model. Various techniques and algorithms have been developed depending on what models they 

usually adopt [1, 2]. Based on the review of some typical approaches and new introduced methods, advantages 

and disadvantages of these methodologies are discussed. From the literature review, some increasing trends 

appeared in the research field of machine prognostics are summarized 
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An overview of two maintenance techniques widely discussed in the literature: time-based maintenance (TBM) 

and condition-based maintenance (CBM) have introduced. The paper discusses how the TBM and CBM 

techniques work toward maintenance decision making. Recent research articles covering the application of each 

technique are reviewed. The paper then compares the challenges of implementing each technique from a 

practical point of view, focusing on the issues of required data determination and collection, data 

analysis/modelling, and decision making [3-5]. The paper concludes with significant considerations for future 

research. Each of the techniques was found to have unique concepts/principles, procedures, and challenges for 

real industrial practice. It can be concluded that the application of the CBM technique is more realistic, and thus 

more worthwhile to apply, than the TBM one. However, further research on CBM must be carried out in order to 

make it more realistic for making maintenance decisions. 

A novel condition-based maintenance system that uses reliability-centered maintenance mechanism to optimize 

maintenance cost, and employs data fusion strategy for improving condition monitoring, health assessment, and 

prognostics. has presents The proposed system is demonstrated by way of reasoning and case studies. 

Maintenance has gained in importance as a support function for ensuring equipment availability, quality 

products, on-time deliveries, and plant safety [6-8]. Cost-effectiveness and accuracy are two basic criteria for 

good maintenance. Reducing maintenance cost can increase enterprise profit, while accurate maintenance action 

can sustain continuous and reliable operation of equipment. As instrumentation and information systems become 

cheaper and more reliable, condition-based maintenance becomes an important tool for running a plant or a 

factory. The results show that optimized maintenance performance can be obtained with good generality. 

A case study that demonstrates the proposed proportional covariate model (PCM) can be used to estimate hazard 

functions of mechanical components or systems in cases of sparse or even zero historical failure data provided 

the covariates of the components or systems are proportional to the hazard of the components or systems has 

presented. The hazard functions of a mechanical component or system can be estimated through a combination 

of PCM and accelerated life tests provided that the hazard of the component or system is proportional to its 

deterioration [9-11]. In principle, the reliability function of a mechanical system can be estimated by a single 

accelerated life test when PCM is used. Therefore, the number of accelerated life tests for estimating the 

reliability of a mechanical system can be significantly reduced by a combination of PCM and accelerated life 

tests. PCM research is still in its infancy and requires more case studies for its verification. Further work is 

continuing using PCM to make reliability predictions when the hazard of a component or system is not 

proportional to its deterioration. Yet another research direction could be the prediction of reliability using PCM 

based on both historical data (failure data and covariates data) and on-line condition monitoring data. 

The results of vehicle exhaust measurements that were used to establish emission standards for an 

inspection/maintenance I/M program have presented. For this purpose, a total number of 100 private autos 

distributed across model years ranging between 1972 and 2002 were tested under idling conditions [12-15]. The 

monitored indicators included air to fuel ratio %, CO %, CO2 %, HC parts per million, ppm, NOx ppm, and O2 

%. Private autos with model years greater than 1994 were found to be compliant with international standards 

and are relatively well maintained. Emissions from older models increased significantly with a lack of engine 

maintenance. They have concluded with criteria for proposing I/M emission standards based on exhaust 

measurements taking country specific socioeconomic characteristics into consideration. 

A policy for optimal scheduling replacement intervals of technical systems only on the basis of maintenance 

cost parameter: a system is replaced by a new one as soon as the maintenance cost within a replacement cycle 

reaches or exceeds a given level has motivated and discussed. It is shown that with respect to the long-run total 

maintenance cost rate, this policy is superior to the well-known economic lifetime approach [16-17]. The simple 

structure of this policy, the fact that maintenance cost data is usually available and that no lifetime data are 

required, facilitate its practical application. 

Maintenance policies for systems whose device failures are ‗non self-announcing‘ have considered: They can 

be discovered only by inspection. Many types of protective equipment (e.g., circuit breakers or alarms), or 

equipment used in stand-by mode, experience such failures; consider maintenance policies for such systems. 

Incipient faults also fit this scenario [18]. To simplify the exposition, consider two possible maintenance 

actions: If at an inspection— 
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1) The device is found failed, then it is replaced with an identical device. 

2) The device is found operational, then it is undisturbed. 

A widely used inspection policy for systems with non-self-announcing failures is to inspect periodically, i.e., 

inspections are scheduled at constant inter-inspection time‘s regard less of the age of the device. While a 

periodic inspection policy is relatively simple to implement, since it does not use any information about the time 

since the last replacement (amount of time for which the current device has been in use), at the same time it 

might ―over inspect‖ at less likely failure times and ―under-inspect‖ at more likely failure time. 

The objective of this paper is to use an analytical method combined with experimental data to make the 

prognosis. It is focused specifically on the use of a generalized statistical method for characterizing and 

predicting system Weibull density function hazard value that best corresponds to the given set of vehicle bi-fuel 

engine exhaust emission and engine valve cover vibration acceleration data. The vehicle bi-fuel engine faults 

considered are changing the level of lubricant oil to be 50%. The hazard value of the vehicle bi-fuel engine is 

determined under a deteriorating phase, which their failures engine exhaust emission and engine valve cover 

vibration acceleration follows the Weibull distribution. A model is used for the average cost per unit time based 

on the stochastic behavior of the assumed system. The model reflects the cost of storing a spare as well as the 

cost of system downtime. The minimum-cost policy (optimum) time is calculated with the consideration of 

availability. 

  

2. Signal Processing and Prognostic System Scheme  

 
Figure 1: The prognostic system scheme 

To achieve the goal of prognostics, three main steps are needed. At first, the failure or defect should be able to 

be detected at its early stage. Secondly, the component or system performance needs to be assessed robustly and 

tracked continuously. Finally, a prediction with confidence interval needs to be generated estimating the 

remaining useful life and possible failure mode of the engine or system. Furthermore, a generalized age repair 

policy based on a cumulative repair cost limit is used. Figure 1 shows the signal processing and system scheme.  

 

3. Background Theoretical Knowledge’s 

3.1. General 

Reliability is the probability that an item will perform satisfactorily for a specified period of time or kilometer 

under specified operating conditions. In the field of reliability, there are many types for life time distributions. 

Some of these types are normal and Weibull distribution. The reliability function of any mechanical component 

is obtained through statistical life testing procedures that are usually conducted under ideal laboratory condition. 

On the other hand, the life time's data can also be collected during the components operation to estimate it's 

distribution parameters and decisions. There has been growing interest in the recent years in reliability and 

maintenance models where the main emphasis is placed on the so called intrinsic age rather than its real age. 

The hazard rate is changed over the life time for any mechanical components as shown in Fig. 1. The figure 

explains the engine main bearing life time, as an example [11], the first interval of time from (t0) to (t1), 

represents reducing the hazard rate due to surface roughness between the main bearing and shaft. The second 

interval of time, from (t1) to (t2) represents the operating normal conditions where the hazard rate is constant 

approximately. On the other hand, the portion of the curve beyond t2 represents the wear-out failure or 

increasing the hazard rate due to increase the clearance between the engine cylinder kit components (piston, 

cylinder liner, and piston rings), if time t2 could be predicted with certainty, then the engine cylinder kit 
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components will be replaced before this wear-out phase begins. The hazard function is taken to be a one 

parameter from the life time distribution that is obtained it through statistical life that is usually conducted under 

ideal laboratory condition. The life time's data of any mechanical component may also be collected during the 

operating to estimate the lifetime distribution. Therefore statistical procedures in estimating the lifetime 

distribution parameters and decisions related with replacement and distributions. 

 

3.2. Hazard Value Model Based on Data-Driven Technique 

Hazard (also called hazard rate or failure rate) is the probability of an item failing at any given instance. Hazard 

may change in time as result of many factors.  

 

 

 

 

 

 

 

 

 

 

The rate at which failures occur in a certain time interval [t, t+1] is called the failure rate during that interval 

(Figure 2). It is defined as the probability that a failure per unit time occurs in the interval, given that a failure 

has not occurred prior to t, the beginning of the interval. Thus the failure rate (hazard rate) is  

)(

)(

)(

)(

)(

1

xR

xf

xR

dxxf

xh

t

t 



       (1) 

             






1

)()(

t

t

xfdtxf

                                                                                        (2) 

It will be seen that if dt is equal to 1 and the height of the curve is assumed to be height f(t) between t and t + 1. 

That means, when the decision maker obtains the probability distribution function from the actual data for any 

system, he can derive the hazard function or the measured degradation of it. On the other hand, after knowing 

the measured degradation of the system, the remaining useful lifetime of it can be predicted. A prognostic 

system in terms of remaining lifetime output that only reported a specific time-to-failure without having any 

confidence bound associated with the prediction would be unwise. This is true for simple prognostic approaches 

that only utilize historical reliability data (such as Weibull distributions) to the more advanced prognostic 

modeling approaches that take design parameter and operating condition uncertainties into account. The data-

driven prognostic modeling approach implemented in this paper takes advantage of the directly sensed 

parameter together with the historical reliability data to provide critical inputs for producing accurate failure 

predictions. Information from rotational vibration acceleration data measurements to represent gear's fault with 

high certainty are used.  

Based on Weibull distribution and the rotational vibration acceleration data measured for a faulty component at 

different operation conditions, the failure Weibull probability density function is written as following [19]: 
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From equation (1), then  
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From equations (3.3.2) and (3.3.3), the hazard rate given by 

Figure 2: Derivation of Failure Rate [19] 
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Where: 

   x: is the threshold value ( testing time or vibration RMS) 
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 : is the characteristic life or is the scale parameter. 
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 : is the shape factor.  

 

3.3. Optimum maintenance policy for replacement  

3.3.1. Age replacement cost model  

The classical policy used in maintenance application is called age replacement principle (ARP). The principle of 

this maintenance strategy is to replace the component with a new one (i.e. maximal repair) when it fails or when 

it has been in operation for Tp time units, whichever comes first. The expected maintenance cost per unit time, 

C, can be written as [20]:  

 

 

                                                                                  (6)  

 

 

Where: 

Cp : is preventive maintenance cost. 

Cc : is corrective (failure) maintenance cost. 

C (Tp)  : is the maintenance cost function per unit time. 

Tp : is preventive replacement age. 

R(t) : is reliability function of the component. 

F(Tp) : is probability) function of the component for preventive replacement. 

R(Tp)   : is reliability function of the component for preventive replacement. 

 

3.3.2. Availability model 

Availability deals with the duration of up-time for operations and is a measure of   how often the wind turbine 

planetary component is alive and well. It is often expressed as (up-time)/(up-time + downtime) with many 

different variants. Up-time and downtime refer to dichotomized conditions. Up-time refers to a capability to 

perform the task and downtime refers to not being able to perform the task, i.e., uptime = not downtime. 

Availability issues also deal with at least three main factors [21] 1) increasing time  to failure, 2) decreasing 

downtime due to repairs or scheduled maintenance, and 3) accomplishing items 1 and 2 in a cost effective 

manner. As availability grows, the capacity for making money increases because the component is in service a 

larger percent of time. 

A maximum availability model is one of the three options for the selection of an optimal predictive maintenance 

strategy. The parameters of this strategy must to be considered. They are fixed values for the downtimes 

incurred by: 

1. preventive renewal (maintenance), and 

2. renewal as a result of failure. 

The costs of materials and labor are not considered significant in this model, or they are believed to be 

proportional to downtime and, thus, can be ignored. 
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where: 

AV (Tp) : is availability 

tp  : is preventive replacement downtime 

tc  : is failure replacement downtime          

In a symmetrical way, the maximum availability model focuses completely on downtime. In this report, high 

availability had bought by paying for it with more frequent intervention. It is assumed that the cost of repair was 

negligeable, or was proportional to the cost, and therefore could be ignored. The difference between failure and 

preventive repair times (rather than costs) dictated the exact nature of   the compromise to achieve high 

component availability. 

 

3.3.3. Maintenance cost and availability (CAV) model 

The combined cost and availability optimization option is used to minimize    expected maintenance cost per 

unit time taking into account costs and duration of preventive and failure downtimes, and cost of downtime. 

This cost model allows for flexibility in setting up realistic parameters upon which to build the optimal decision 

model. For example 

 the fixed cost of failure replacement may be high  (say due to the cost of a  

new part), but 

 the downtime required may be short (just to replace the part). 

Or, by comparison, the situation may be that: 

 the cost of preventive work can be small, but 

 the time to complete the work (downtime) can be long. 

This model resolves the extremely difficult problem of deciding upon maintenance policies in the light of actual 

maintenance costs. The expected maintenance cost and availability per unit time, C + AV, can be written as 

[22]: 
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where: 

C(Tp) + AV(Tp) : is maintenance cost function and availability combined 

ap   : is hourly preventive replacement cost per unit time 

ac   : is hourly corrective (failure) replacement cost per unit time 

 

4. Experimental Methodology  

4.1. Test Rig  

The test setup consisted of a four-cylinder spark-ignited engine The measurements of vibration and emission 

used in this study are shown in Figures 3 and 4 respectively. It consists of bi-fuel engine with its two phases 

(gasoline and compressed natural gas). The engine has been tested in the healthy condition of full lubricant oil 

and for fault state prognosis. The fault is the reduction of lubricated oil level (50%). The engine rotational speed 

is being 2000 rpm and torque load is provided by a hydraulic brake connected to load the engine at 30.0 Nm. 

The gas is then filtered and dried before entering the analyzer. The speed is measured by a photo electric probe. 

Recordings were carried out at constant speed condition. Figure 4 shows Emission measurement system. 

Recordings were carried out at constant speed. After acquiring the measured vibration signals in the time 

domain as described above, it is processed to obtain feature vectors 

 

4.2. Description of Instrumentations System  

Smart phone sensors was used for the vibration acceleration signals record mounted upon the engine valve 

cover. The sampling frequency used was 6.0 kHz and signals of 22.0 sec duration were recorded. The ICM-

20608-G is the latest 6-axis device offered by InvenSense for the mass market. Measures the acceleration force 

in m/s
2
 that is applied to a device on all three physical axes (x, y, and z), including the force of gravity . The 
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ICM-20608-G is a 6-axis Motion Tracking device that combines a 3-axis gyroscope, and a 3-axis accelerometer 

in a small, 3 mm x 3 mm x 0.75 mm (16-pin LGA) package. The gyroscope has a programmable full-scale range 

of ±250, ±500, ±1000, and ±2000 degrees/sec. The accelerometer has a user-programmable accelerometer full-

scale range of ±2g, ±4g, ±8g, and ±16g. Factory-calibrated initial sensitivity of both sensors reduces production 

line calibration requirements. Figure 2 shows vibration sensor position AGE-200 gas analyzer is infrared rays 

exhaust gas analysis module, to be connected to the serial port of any personal computer with the integrated 

software type OMNIBUS-800. The analyzer and software are belong Brain Bee. The small size and the 12V 

DC- power supply allows using it as portable tool wherever required used during the experimental work. The 

gas analyzer is equipped with gas sampling probe to collect the exhaust gas from the muffler. 

 

4.3. Test Procedure  

The measurements technique has been employed to test the vehicle bi-fuel engine during operation, namely 

vibration acceleration generation and exhaust emission components. One fault has been made artificially on the 

engine, namely reduce the lubricant oil by 50% to create a wear which eventually led to a propagating failure.  

For 50% oil level, a recordings every 30 min were acquired and a total of 7 recordings (0-3 hr of test duration) 

were resulted until the termination of the test.  This type of test was preferred in order to have the opportunity to 

monitor path fault modes, i.e., the natural fault propagation.  Failure is assured by increasing the test period to 

the point of where the remaining metal in the contact components have enough wear to be in the plastic 

deformation region. Since the engine is not new, the residual signals of vibration acceleration and the exhaust 

emission components measured between the signal at lubricant oil 100% and 50%  is considered  Figures 1 and 

2 show vibration sensor position and Emission measurement system respectively. Data was measured and 

processed for healthy conditions (100% lubricant oil level) and for conditions with artificially induced (50% 

lubricant oil level).. The hazard function is taken to be a one parameter from the life time distribution that is 

obtained it through statistical life that is usually conducted under ideal laboratory condition. The life time's data 

of any mechanical component may also be collected during the operating to estimate the lifetime distribution. 

Therefore statistical procedures in estimating the lifetime distribution parameters and decisions related with 

replacement and distributions. Moreover, periodic monitoring is, therefore, used due to it being more cost 

effective and providing more accurate diagnosis using filtered and or processed data. Of course, the risk of using 

periodic monitoring is the possibility   of missing   some   failure events   which   occur   between   successive 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Figure 3: Vibration sensor  

position overview  

Figure 4: Emission measurement 

system overview 

 

5. Results and Discussion 

5.1. Time Domain Signal Analysis 

Analysis in the time domain reveals the overall signal amplitude, periodic features, and emission components 

and vibration acceleration signals type. Figures 5 show the raw recorded signals residual (50%-full oil level) of 
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total hydrocarbon (THC) for gasoline and CNG, as an examples. The figures show that the emission 

components level and vibration acceleration values was proportional to the reduction of the lubricant oil level.  

 

5.2. Frequency Domain Signal Analysis 

Analysis in the frequency domain reveals the overall signal amplitude, periodic features, and emission 

components and vibration acceleration signals type. Figures 6 show the raw recorded signals residual (50%-full 

oil level) vibration acceleration for gasoline and CNG in Z-direction as an examples. The figures show that the 

emission components level and vibration acceleration values was proportional to the reduction of the lubricant 

oil level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Residual values of total hydrocarbon (THC) 

for gasoline and CNG 

Figure 6: Residual vibration acceleration for gasoline 

and CNG in Z-direction 

 

5.3. Decision Making Determination 

5.3.1. Background 

A further purpose of condition monitoring is health prognosis. Health prognosis is able to predict and prevent 

possible fault or system degradation before failure occurs. Prognosis is based on the component‘s historical data 

and current condition, its physical models of failure and the short term usage plan. Health prognosis allows 

maintenance personnel to optimize the maintenance policies to find the balance between the risk of running with 

damages and the lost revenue while waiting for maintenance. Prognosis has the largest potential return of all 

condition monitoring technologies. 

 

5.3.2. Vehicle bi-duel engine emission components and vibration acceleration data 

Individual operating vehicle bi-fuel engines do not replace reliability data that reflect population characteristics. 

CM data mainly provide information for short-term condition prediction only. Several data-driven prognostics 

models enabled the vehicle bi-engine prognosis using time series prediction. These models mainly performed 

single-step-a head predictions to estimate the vibration acceleration and emission components signal feature 

values. The details of experimental testing system and experimental procedure were presented in section 4, 

where tests were conducted on the bi-fuel vehicle engine. Two test cases (one full and 50% oil level faults) were 

considered.. For each test case, the corresponding hazard rate is determined. The test cases differed in terms of 

vibration acceleration response and emission components scales, while the time scale is ranged up to 45.0 s 

(Figure 5) and 800 Hz (Figure 6), from which, RMS value of vibration acceleration response and emission 

components levels, where RMS values are found to be a good indicator for diagnosis process. However, the 

RMS value will be used in prognostic process in terms of hazard values prediction Examples of the residual 

emission components prediction (emission shape factor (β) and scale parameters (η)) for the vehicle bi-fuel 

engine at (full-50%) lubricant oil level condition. from the residual emission component of (NOx) for CNG fuel 

phase and component of (CO) for gasoline fuel phase are shown in Figure 7 and 8 respectively at testing time 

from 0.0 to 3.0 h with increment of 30 min for all the tests considered, while all the rest of RMS data as 
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condition monitoring indicators are tabulated in Table 1. On the other hand, examples of residual vibration 

acceleration responses prediction (vibration shape factor (β) and scale parameters (η)) for the vehicle bi-fuel 

engine at (full-50%) lubricant oil level condition. from the residual vibration acceleration at (Y-direction) for 

CNG fuel phase and at (Z-direction)) for gasoline fuel phase are shown in Figure 9 and 10 respectively at testing 

time from 0.0 to 3.0 h (180 min) with increment of 30 min for all the tests considered, while all the rest of RMS 

data are tabulated in Table 2.  

. 

        
Figure 7: RMS- Emission scale values measured vs. 

testing time 50% oil CNG 

Figure 8: RMS- Emission scale values measured vs. 

testing time 50% oil Gasoline 

 

        
Figure 9: RMS- Vibration scale values measured vs. 

testing time 50% oil CNG 

Figure 10: RMS-Vibration scale values measured vs. 

testing time 50% oil Gasoline 

 

5.3.3: Vehicle bi-fuel engine hazard values and remaining life time 

Individual operating vehicle bi-full engine does not replace reliability data that reflect population characteristics. 

CM data mainly provide information for short-term condition prediction only. Several data-driven prognostics 

models enabled gearbox prognosis using time series prediction. The shape factor (β) and scale parameters (η) 

data of Weibull distribution presented in Tables 1 and 2 are substituted in equation (5). Samples for the emission 

hazard value and the remaining life time are shown in Figures 11 and 12, while Table 3 tabulates the digit 

numbers of the data. On the other hand, Figures 13 and 14 show samples for vibration acceleration hazard value 

and the remaining life time (RLT), where the digit numbers of the data are presented in Table 4. The remaining 

life time data presented in Tables 3 and 4 for the vehicle bi-fuel engine in its CNG phase which are higher than 

that of gasoline phase. Furthermore, it can be seen that the remaining life time are used effectively. It captured 

the system behavior exactly and gives an alarm signal about possible irregularity before the vehicle bi-fuel 

engine actually broke. This is a very valuable indication for the vehicle bi-fuel engines health. On the other 

hand, averages have been carried out and are presented in Table 3 for the emission components RLT at full oil 

level (healthy) which is 15870 min (264.5 h), for gasoline residual (full=50%) is1095 min (18.25 h) and for 

CNG residual (full-50%) is 1590 min (26.5 h), while in Table 4, modulus have been calculated for  the vibration 

RLT, where at gasoline full oil level (healthy) is 42744.35 min  (712.1 h), at gasoline residual (full=50%) is 

2286.31 min (38.11 h) and for CNG residual (full-50%) is 4237.12 min (70.62 h).  
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Failure lifetime factors (FLF) are computed from the data in Tables 3 and 4, where FLF for the emission 

0.068998 in gasoline phase and 0.099127 in CNG phase Table 3. In vibration acceleration the FLF is 0.053488 

in gasoline phase and is 0.100189 in CNG phase. Bearing in mind that the FLF is considered to be the 

vibration/emission (modulus / average) for either gasoline or CNG at full-50% oil level over the 

vibration/emission (modulus / average) for full oil level.  These data indicate that for gasoline fuel phase is more 

serious (severity) that than for CNG. 

Table 1: Condition monitoring indicators bi-fuel engine - exhaust emission components  

Emission 

Component 

Testing Time, min 
Shape 

factor 

(β) 

Scale parameters 

(η) 0.0 30.0 60.0 90.0 120.0 150.0 180.0 

RMS, ppm -gasoline- full oil level (healthy), 

engine speed 2000 rpm, torque load 30 Nm 
ppm  

Time, 

min  

NOx 179.96 43.13 59.72 58.06 67.54 67.54 21.69 3.5 307.67 13080.8 

CO 
20225 5127

1 48029 

48029

. 57334 57323 54515 

3.5 
388439 8478.1 

CO 2 
106170

0 

9004

10 

89210

0 

87780

0 

91980

0 

91950

0 

84800

03 

3.5 
238202 33166.7 

THC 301.41 570.7 569.9 481.3 558.2 558.4 469.2 3.5 90858 16869.6 

RMS, ppm-gasoline-residual (Full-50%) oil level, 

engine speed 2000 rpm, torque load 30 Nm 

 

NOx 12.944 21.94 20.10 38.72 30.21 36.45 25.41 3.5 307.6689 1476 

CO 20958 30140 31740 29460 25050 27020 35490 3.5 388439. 808.7 

CO 2 
00283

9 83560 77600 00457 86600 00971 30100 

3.5 
238202 

802.8 

THC 259.43 300.1 260.3 351.7 324.0 394.0 323.6 3.5 90857.5 2377 

RMS,  ppm -CNG - residual (Full-50%) oil level,  

engine speed 2000 rpm, torque load 30 Nm 

 

NOx 13.00 30.44 23.647 24.980 19.95 12.12 8.183 3.5 307.76 853.5 

CO 23.06 272.3 206.79 246.68 256.1 283.4 268.5 3.5 388439 1497 

CO2 
12050

0 00408 

12429

0 

20086

0 

14030

0 

19610

0 

13090

0 

3.5 
238202 

264.6 

THC 37.78 55.63 89.074 107.44 94.30 73.74 84.35 3.5 90857.5 2205 

Table 2: Condition monitoring indicators bi-fuel engine - vibration acceleration 

Vibration 

Acceleration 

Testing Time, min 
Shape 

factor 

(β) 

Scale parameter 

(η) 0.0 30.0 60.0 90.0 120.0 150.0 180.0 

RMS , m/s
2
 - Gasoline – Full oil level (healthy),  

engine speed 2000 rpm, Torque load 30 Nm 

Value

m/s
2
 

Time,  

min  

X-Direction 0.135 0.226 0.266 0.294 0.203 0.207 0.209 3.5 3.133 28930 

Y-Direction 0.142 0.244 0.245 0.222 0.204 0.210 0.213 3.5 2.381 21797 

Z-Direction 0.195 0.420 0.481 0.723 0.330 0.348 0.371 3.5 3.568 12050.7  

RMS , m/s2 - Gasoline - Residual (Full-0. 50) oil level,  

engine speed 2000 rpm, Torque load 30 Nm 

 

7X-Direction 0.16 0.225 0.168 0.377 0.317 0.323 0.337 3.5 3.135 649.0981 

Y-Direction 0.233 0.289 0.138 0.286 0.270 0.267 0.259 3.5 2.73 2022.499 

Z-Direction 0.283 0.451 0.349 0.705 0.336 0.335 0.360 3.5 3.75 932.0851 

RMS , m/s
2
 CNG - Residual (Full-0. 50) oil level,  

engine speed 2000 rpm, Torque load 30 Nm 

 

X-Direction 0.201 0.253 0.255 0.267 0.250 0.322 0.318 3.5 3.135 1382.005 

Y-Direction 0.107 0.252 0.226 0.227 0.219 0.272 0.262 3.5 2.73 2348.951 

Z-Direction 0.127 0.202 0.187 0.167 0.172 0.176 0.171 3.5 3.75 3313.034 
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Figure 11: Nitrogen oxides (NOx), hazard value - 

gasoline full lubricant oil level 

Figure 12: Nitrogen oxides (NOx)-remaining life time - 

(full-50%) lubricant oil level 

 

Table 3: Single numbers of emission hazard value and corresponding remaining life time  

No. 

 

Exhaust gas Emission 

Component 

Condition 

Emission 

component hazard 

value, full oil,  

ppm 

Faults 
Remaining Life 

Time, min (h) 

1 Nitrogen Oxides (NOx), 

Gasoline  

Fuel 

111 

Full oil 

(healthy) 

13200 (220) 

2 Carbon Monoxide (CO), 10400 8520 (142) 

3 Carbon Dioxide (CO2),  10000 24720 (412) 

4 Total Hydrocarbon (THC) 1325 17040 (284) 

    Average 15870 (264.5) 

1 Nitrogen Oxides (NOx), 

Gasoline  

Fuel 

111 
Full-50 % 

Lubricant. 

oil 

1020 (17) 

2 Carbon Monoxide (CO), 10400 1140 (19) 

3 Carbon Dioxide (CO2),  10000 1020 (17) 

4 Total Hydrocarbon (THC) 1325 1200 (20) 

    Average 1095 (18.25) 

5 Nitrogen Oxides (NOx), 

CNG 

Fuel 

111 
Full-50 %  

Lubricant  

oil 

1440 (24) 

6 Carbon Monoxide (CO), 10400 2100 (35) 

7 Carbon Dioxide (CO2),  10000 480 (8) 

8 Total Hydrocarbon (THC) 1325 2340 (39) 

    Average 1590 (26.5) 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 13: Vibration, Y-direction hazard value – 

gasoline - full lubricant oil level 

Figure 14: Vibration, Y-direction - remaining life time 

- (full-50%) lubricant oil level 

Vibration, Y- Driction, Bi-Fuel Engine, Gasoline Fuel, 

Engine Speed 2000 rpm, Torque Load 30 Nm
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Table 4: Single numbers of vibration hazard value and corresponding remaining life time. 

No. 
Vibration 

Direction 
Conditions 

Vibration hazard value, 

full oil, m/s2 
Faults 

Remaining Life 

Time min (h) 

1 X Direction 

Gasoline Fuel 

3.135 
Full oil 

(healthy) 

29280 (488) 

2 Y-Direction 2.73 22020 (367) 

3 Z-Direction 3.75 12120 (202) 

    Modulus 42744.35  (712.1) 

1 X Direction 

Gasoline Fuel 

3.135 
Full-50 %  

Lubricant oil 

600 (10) 

2 Y-Direction 2.73 2040 (34) 

3 Z-Direction 3.75 840 (14) 

    Modulus 2286.31 (38.11) 

4 X Direction 

CN Fuel 

3.135 
Full-50 %  

Lubricant oil 

1260 (21) 

5 Y-Direction 2.73 2340 (39) 

6 Z-Direction 3.75 3300 (55) 

    Modulus 4237.12  (70.62) 

 

5.3.4. Vehicle bi-engine maintenance cost rate - availability and preventive-corrective costs 

The maintenance cost and availability of the vehicle bi-full engine (gasoline and CNG) were calculated with 

respect to its emission components and vibration acceleration in (X, Y, Z) signatures when the engine was in 

healthy condition (lubricant oil level is full) and in faulty conditions (lubricant oil level 50%). in the range of 

remaining life time (RLT) (which is discussed in the previous section) and based on equation (8). Samples from 

the emission cost rate-availability and preventive and corrective costs with availability results are shown in 

Figures 15 and 16 respectively and all the results where the digit numbers of the data are tabulated in Table 5. 

On the other hand, Figures 17 and 18 show samples for the vibration cost rate-availability and preventive and 

corrective costs with availability results where the digit numbers of the data are presented in Table 6. The 

average/modulus maintenance cost saving data shown in Tables 5 and 6 for the vehicle bi-fuel engine in its 

CNG phase which are lower than that of gasoline phase. On the other hand, averages have been carried out and 

are presented in Table 5 for the emission components percentage cost saving at full oil level (healthy) which is 

22.72%, for gasoline residual (full=50%) is 32.84%) and for CNG residual (full-50%) is 29.29%, while in Table 

6, modulus have been calculated for  the vibration percent cost saving, where at gasoline full oil level (healthy) 

is 42.04% , at gasoline residual (full=50%) is 56.89% and for CNG residual (full-50%) is 65.60% 

    Cost savings factors (CSF) are computed from the data in Tables 5 and 6, where CSF for the emission 1.45 in 

gasoline phase and 1.29 in CNG phase Table 5. In vibration acceleration the CSF is 1.33 in gasoline phase and 

is 1.56 in CNG phase Table 6. Bearing in mind that the CSF is considered to be the vibration/emission (modulus 

/ average) for either gasoline or CNG at full-50% oil level over the vibration/emission (modulus / average) for 

full oil level.    

     Based on Figures 16 and 18 as examples for preventive and corrective cost and availability data were 

determined based on the vehicle bi-full engine (gasoline and CNG) were calculated with respect to its emission 

components and vibration acceleration in (X, Y, Z) signatures when the engine was in healthy condition 

(lubricant oil level is full) both in gasoline fuel and in faulty conditions (lubricant oil level 50%).in  gasoline and 

CNG fuels for the range of remaining life time (RLT) (which is discussed in the previous section).The 

preventive and corrective cost and availability data were determined based on equation (8) after was divided 

into two parts related to the preventive (optimum maintenance cost (Cp). and to the corrective (failure) 

maintenance cost (Cc) .. For engine healthy conditions full lubricant oil level), the percentage of preventive cost 

and availability from the total basic cost and availability at failure point is 0.0, while for the corrective is 100. 

Tables 5 and 6 depict the variation of preventive and corrective cost with respect to emission and vibration 

respectively, where the variation of preventive cost is nearly the same for either healthy or faulty bi-engine, 

while the variation of corrective cost is higher for faulty bi-engine (gasoline and CNG) with shorter operating 

time than that for healthy bi-engine. An important notice is that the preventive and corrective cost are equal at 
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intersect point, where the emission average cost is 7294 L.E./hr at 102.5 h (healthy gasoline engine), is 454.6  

L.E./hr at 9.713 h (faulty gasoline engine) and is 478.8  L.E./hr at 10.53 h (faulty CNG engine), Table 5 . On the 

other hand, the vibration modulus cost is 8073 L.E./hr at 117.7 h (healthy gasoline engine), is 505.7 L.E./hr at 

9.9 h (faulty gasoline engine) and is1. 281.7 L.E./hr at 15.97 h (faulty CNG engine), Table 6 .       

 

 

 

 

 

 

 

 

 

 

        

Figure 15: Total hydrocarbon, cost rate - availability 

(full-50%) lubricant  

oil level 

Figure 16: Total hydrocarbon (THC) - preventive - 

corrective with availability - (full-50%) lubricant oil 

level  

 

 

 

 

 

 

 

 

 

 

 

Figure 17 : Vibration X-Direction, cost rate - 

availability (full-50%)   

lubricant oil level  

Figure 18 : Vibration X- Direction, preventive-

corrective with availability costs – (full-50%) lubricant 

oil level 

Table 5: Single number of emission cost rate-availability and preventive-corrective costs estimated at engine 

speed 2000 rpm - torque load 30 Nm 

No. 
Emission  

Component 

 

Replacement 

Policy Conditions Fault 

Cost rate-

availability 

preventive-

corrective 

costs 

L.E/h Time h 
L.E/

h. 

Time 

h 

1 
Nitrogen Oxides 

(NOx), 

Failure  

Gasoline Fuel 
Full oil 

(healthy) 

92.06 284 
Intersect point 

Optimum 60.99 76 

Saving,% 33.75% 208 8652. 76 

2 
Carbon Monoxide 

(CO), 

Failure  46.91 560 
Intersect point 

Optimum 35.21 142 

Saving,% 24.94% 418 2959 49 

3 
Carbon Dioxide 

(CO2), % 

Failure  182.8 143 
Intersect point 

Optimum 135.7 37 

Saving,% 25.61% 106 8370 186 

4 Total Hydrocarbon Failure  118.6 221 Intersect point 

Vibration, X-Direction, Bi-Fuel Engine, Engine Speed 2000 rpm, Torque Load 30 Nm
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(THC) Optimum 80.75 53 

Saving,% 31.91% 168 9193 99 

     Average= 22.72% 7294 102.5 

1 Full oil (healthy) 

Failure  

Gasoline Fuel 

Full-50 %  

Lubricant 

oil 

1291 19 
Intersect point 

Optimum 875 7 

Saving,% 34.47% 12 486.6 9.5 

2 
Carbon Monoxide 

(CO), 

Failure  2453 8 
Intersect point 

Optimum 1641 5 

Saving,% 33.1% 3 432 10 

3 
Carbon Dioxide 

(CO2), % 

Failure  724 35 
Intersect point 

Optimum 488 13 

Saving,% 32.59% 22 480 9.2 

4 
Total Hydrocarbon 

(THC) 

Failure  1132 22 
Intersect point 

Optimum 779 8 

Saving,% 31.18% 14 420 10.15 

     Average= 32.84% 454.6 9.713 

5 
Nitrogen Oxides 

(NOx), 

Failure  

CNG Fuel 

Full-50 %  

Lubricant 

oil 

1024 24 
Intersect point 

Optimum 709.7 9 

Saving,% 31.89% 15 384 11 

6 
Carbon Monoxide 

(CO), 

Failure  1808 13 
Intersect point 

Optimum 1177 6 

Saving,% 34.9% 7 650 7.5 

7 
Carbon Dioxide 

(CO2), % 

Failure  1781 13 
Intersect point 

Optimum 1162 6 

Saving,% 34.76% 7 640 7.6 

8 
Total Hydrocarbon 

(THC) 

Failure  545 39 
Intersect point 

Optimum 460 12 

Saving,% 15.6% 27 241 16 

     Average=29.29% 478.8 10.53 

 

Table 6: Single number of vibration cost rate-availability and preventive-corrective costs estimated at engine 

speed 2000 rpm - torque load 30 Nm 

No. 
Vibration 

Direction 

 

 

Replacement 

Policy 

 

Conditions 

Fault 

Cost rate-

availability 

preventive-

corrective 

costs 

L.E/h Time h L.E/h 
Time 

h 

1 X Direction 

Failure  

Gasoline Fuel 
Full oil 

(healthy) 

53.73 488 
Intersect point 

Optimal 40.35 129 

Saving,% 24.9% 359 7771 159 

2 Y-Direction 

Failure  53.60 367 
Intersect point 

Optimal 41.46 101 

Saving,% 22.71% 662 8755 125 

3 Z-Direction 

Failure  129.2 202 
Intersect point 

Optimal 96.73 40 

Saving,% 25.13% 162 7694. 69 
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     Modulus= 42.04% 8073 117.7 

1 X Direction 

Failure  

Gasoline Fuel 

Full-50 %  

Lubricant 

oil 

2109.9 11 
Intersect point 

Optimal 1351.6 5 

Saving,% 35.94% 6 697 7 

2 Y-Direction 

Failure  740 34 
Intersect point 

Optimal 524.5 11 

Saving,% 29.12% 23 270 14.2 

3 Z-Direction 

Failure  1522 16 
Intersect point 

Optimal 1018 7 

Saving,% 33.11% 9 550 8.5 

     Modulus= 56.89% 505.7 9.9 

4 X Direction 

Failure  

C NG 

Fuel 

Full-50 %  

Lubricant 

oil 

1077.7 23 
Intersect point 

Optimal 746.9 9 

Saving,% 30.42% 14 440 11 

5 Y-Direction 

Failure  955.9 39 
Intersect point 

Optimal 467 12 

Saving,% 51.15% 27 230 15.9 

6 Z-Direction 

Failure  468.9 55 
Intersect point 

Optimal 339.5 16 

Saving,% 27.60% 39 175 21 

     Modulus= 65.60% 281.7 15.97 

 

5.4. Combined Engine Exhaust Emission and Vibration Signatures 

The capabilities and limitations of two various techniques (signatures) including vibration analysis and exhaust 

emission.. Based on the health condition, maintenance personnel can make decisions on maintenance actions. 

Compared to other maintenance policies, CBM can avoid unexpected downtime, and prevent the failure from 

propagation from a component level to a subsystem level. Accordingly, the combination of engine exhaust 

emission and vibrational signatures when the engine was in healthy condition (lubricant oil level is full) and in 

faulty conditions (lubricant oil level 50%). in the range of remaining life time (RLT) (which is discussed in the 

previous section) at 2000 r/min and torque load of 30 Nm. The analysis started by collecting the failure lifetime 

factors (FLF) from section 5.3.2 and the emission components percentage cost saving and savings factors (CSF) 

from section 5.3.3 and presented in Table 7. The combined FLF indicates that the fault of full-50% for gasoline 

fuel is lower than that the fault of full-50% for CNG fuel, while the combined CSF indicates that the fault of 

full-50% for gasoline fuel is higher than that the fault of full-50% for CNG fuel. 

 

Table 7: Single number of remaining life time and Cost and Availability Saving estimated at engine speed 2000 

rpm - torque load 30 Nm 

Condition Fault 

Remaining Life Time, h Cost and Availability Saving, % 

Emission  Vibration Combined Emission  Vibration Combined 

Average Modulus Value FLF Average Modulus Value CSF 

Gasoline 

Fuel 

Full oil 

(healthy) 
264.5 712.41 488.5 1 22.72 42.04 32.38 1 

Gasoline 

Fuel 

Full-50 %  

Lubricant oil 
18.25 38.11 28.2 0.0577 32.84 56.89 61.29 1.89 

CNG  

Fuel 

Full-50 %  

Lubricant oil 
26.5 70.62 48.6 0.0995 29 65.60 47.3 1.47 
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6. Conclusions 

1. Decision making determination through a single signature may lead to misjudgment, so that additional 

maintenance cost is caused. The application of the methods combined several signatures is necessary. Two 

signatures were used and applied on a vehicle bi-fuel engine, where the fault considered is reduction of the level 

of lubricant oil level (50%). The capabilities and limitations of two various signatures including vibration 

analysis and exhaust emission signature-based were used. The results showed that the necessity of combining 

various techniques.  

2. Results are presented for cost analysis of the vehicle bi-fuel engine conditions using cost analysis models. The 

prognostic performance was illustrated using five types of engine faults. Maintenance managers can use the 

methods described herein as a practical way to improve the return on investment in their existing CBM 

programs. The sample size of the data (number of histories, not number of inspections) analyzed in this sub-task 

is relatively low. Although larger sample size would provide greater confidence, the test rig data was found to 

be adequate for demonstrating the usefulness of PHM and decision policy methodology described in this 

analysis for predicting and preventing gearbox failures. 

3- In general, the information of the vehicle bi-fuel engine failure risk assessment can help for prognostic 

procedure. The cost saving associated with early detection of incipient failures are quantified. This will require 

better tracking of costs associated with various types of repairs, including repairs completed in the nacelle 

versus repairs done in a repair facility. Therefore, the combined FLF indicates that the fault of full-50% for 

gasoline fuel is lower than that the fault of full-50% for CNG fuel, while the combined CSF indicates that the 

fault of full-50% for gasoline fuel is higher than that the fault of full-50% for CNG fuel. 

4- The effectiveness of the hazard rate in estimating the variations of the monitoring RMS values are presented. 

In this work, one-step-ahead prediction was considered; the extension to multi-time-step a head prediction and 

the potential application of these techniques for the development of on-line prognostic systems for the vehicle 

bi-fuel engine condition are under consideration for further work. 
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