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Abstract In this paper, we propose a nonconvex variational model to Poisson noise removal. An efficient 

iterative algorithm based on the augmented Lagrangian technique is proposed. Numerical experiments illustrate 

the effectiveness of the proposed method. 
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Introduction 

The deblurring problem for images corrupted by Poisson noise is an important task in various applications, such 

as astronomical [1], medical [2] and photographic imaging [3]. The problem of restoration of Poissonian images 

has received considerable attention in recent years. Image restoration in such fields of applications can often be 

formulated as linear ill-posed problems. The goal of image deblurring and denoising is to recover approximate 

images of original images from blurred and noisy measurements. 

Let 
nnRu   be the original image, 

nnRf   be the observed image,
nnnn RRK  :  is a blurring 

operator which model a convolution or some other linear observation mechanism, such as emission tomography. 

Then the degradation model can be written as 

)( bKuPf  ,        (1) 

where )(P  denotes a Poisson distributed random vector with mean  , and 0b  is an array describing the 

expected value of the background emission. 

The likelihood probability distribution of (1) can be expressed as 
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By a simple calculation, the above equation is equivalent to 
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the unknown image can be recovered by minimizing the likelihood function (3) with respect to u . 

   The standard algorithm for the minimization of (3) is the Richardson-Lucy (RL) algorithm [4,5], which takes 

account Poisson statistics of the photon counting. However, this method is unable to prevent noise amplification 

sufficiently during the iterative process due to the ill-posedness of the inverse problem. 

   Since as a consequence of noise and ill-posedness of the inverse problem, in general the minimizers of the 

function )]([log- Kufp  are not reliable solutions of the image restoration problem and they are sparse [6-8]. 

A general approach to compute a useful approximation solution of (3) is to replace the system by a better-

conditioned nearby system. This replacement is known as the regularization. Regularization methods formulate 

the image restoration problem as a minimization problem of the form  
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                        (4) 

where the regularization function )(reg u   is a prior information about the object to be recovered and   is the 

regularization parameter. 

In recent years, sparsity-based priors of images in certain domains have been widely used in many image 

restoration tasks, which is based on the observation that images usually have sparse representations in some 

transformed domains such as Fourier transforms, cosine transforms, wavelet or framelet transforms. The ability 

to approximate images sparsely is an important characteristic of wavelets, see [9]. There are mainly three 

formulations utilizing the sparseness of the wavelet frame coefficients, namely analysis based approach, 

synthesis based approach, and balanced approach. In our work, we will focus on the analysis approach. The 

analysis approach is often modeled as a regularization term in (4) as follows 

1reg )( Wuu   ,                                   (5) 

where W  is the analysis operator and Wu  is the corresponding wavelet frame coefficients. We know that the 

wavelet frame based methods are a reasonably effective procedure for noise reduction and blur removal when 

the image of interest possesses a sparse wavelet representsation. However, the methods implemented by pure 

wavelet thresholding also revoke unpleasant artifacts around discontinuities as a result of Gibbs phenomenon. 

   In order to further improve the quality of the restored images, some nonconvex regularization methods are 

proposed. In [10], Nikolova et al. pointed out that nonconvex nonsmooth regularization has advantages over 

convex regularization for offering better possibilities to recover images with neat edges. However, its practical 

interest used to be limited due to the difficulty of the computational stage which requires a nonsmooth 

nonconvex minimization. 

In this paper, in order to induce wavelet-domain sparsity, we apply a nonconvex penalty due to its strong 

sparsity-inducing properties. We use firm thresholding, a continuous piecewise-linear approximation of hard 

thresholding, to compute the minimization involving the non-convex penalty. 

This paper is organized as follows. In Section 2, we give some preliminaries of framelets, then we present the 

new model for image restoration. In Section 3, we employ the ADMM to find the solution of the proposed 

model. Some numerical experiments are given to illustrate the performance of the proposed algorithm in Section 

4. 

 

The proposed model 

In this section, we present some preliminaries of tight framelets.  

Let 
22)1(

,,11,10 ],,,,,[ nnJQTT
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J

TT RWWWWW   be a multi-level wavelet tight frame transform 

operator, i.e. IWW T  , that convert an lilters that the wavelet system used. So Wf  is a multi-lever wavelet 

tight frame transform of f . 

In this paper, we proposed the following model 
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In the function , 0  is a firm thresholding parameter. See [11] for more details. It is not difficult to see that 

  is a nonconvex function. In this paper, we use the nonconvex term )(Wf  to improve the wavelet-domain 

sparsity of the restored images. 

 

Numerical algorithm 

Here we discuss the details of the algorithm to solve the hybrid model (6). The proposed algorithm is an 

application of the ADMM. By introducing three auxiliary variables yx, , we reformulate the model (6) as the 

following constrained optimization problem 

)()log()(min
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s.t. yWuxKu  , . 

The resulting augmented Lagrangian function is 
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Since the variables xu,  and y are decoupled, this allows us to solve them more easily on their corresponding 

subproblems in the ADMM. We now investigate these subproblems one by one for the Poisson noise removal 

problem. 

Firstly, we solve for the variable u  in the subproblem. This subproblem corresponds to the following 

optimization problem 
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The minimizer can be obtained by equivalently solving a linear system 

)()()( 221121

kkTkkTTT dyWdxKuWWKK   , 

where we have used IWW T  . Under the periodic boundary conditions, the matrices K  have block circulant 

with circulant blocks (BCCB) structure, so the above linear system can be efficiently solved by using FFTs. 

Denoting )(uF  as the fast Fourier transform of u , we can write 
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The minimization of L  with respect to x  is expressed as the following simple form 
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The corresponding solution can be obtained 
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The minimization of L  with respect to y  is expressed as the following simple form 
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The corresponding solution can be obtained 
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On the other hand, the updating scheme of the Lagrangian multipliers can be rewritten specifically as 
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The resulting algorithm based ADMM is summarized as Algorithm 1. 

                                             

Algorithm 1 ADMM for the image restoration problem (6)                                

Initialization: tol , MaxIter, ,0 Kux  Wuy 0
, 21, , 00 id for 2,1i , 0k ,const 1 . 

Iteration: 

While (const) 
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Numerical experiments 

In this section, we conduct several numerical experiments to illustrate the performance of the proposed hybrid 

model. All the experiments were performed using MATLAB 7.7.0 on a computer equipped with an Intel (R) 

Core (TM) 2.60 GHz processor, with 4.00 GB of RAM, and running Windows XP. 

We compare our method with tight frame model (Convex) with 
1

)( Wuureg   in (4), and we also use 

ADMM solve this model. The quality of the restored images is measured by Peak-signal-to-noise ratio (PSNR), 

and Structural similarity index (SSIM). They are defined as follows: 
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where 
*f  is the original image, and u  is the restored image. *f

 and u  are averages of 
*f and u  

respectively, *f
  and u  are the variance of 

*f and u  respectively, 
uf *  is the covariance of 

*f and u  

and the positive constants 1C  and 2C  can be thought of as stabilizing constants for near-zero denominator 

values. 

We use the stopping criterion when the maximum number of allowed outer iterations MaxIter has been carried 

out or the relative differences between consecutive iterates ,,, 321 uuu …… satisfy 

tolk
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u
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2
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In this paper, we set MaxIter=100, 
310tol and 5b  in Algorithm 1. 

It is known that the quality of the restored image is highly depended on the regularization parameters. In order 

to have fair comparisons for the two methods, we use the best regularization parameters such that the optimal 

PSNR values are achieved. Regarding the penalty parameters  's in Algorithm 1, theoretically any positive 

values of 1  and ensure the convergence of the ADMM [12]. In numerical experiments, we set 

005.021   in the convex model and 001.021  in our method, i.e. the Nonconvex model. 

The test images are shown in Fig. 1. In order to simulate the degraded operation in the tests, we generate the 

blurred and noisy images by blurring the true images with the given different point spread functions and 

additionally contaminate it by Poisson noise, which is implemented by applying the Matlab routine poissrnd . 

For each image, we consider three different blurs: the out-of-focus blur proposed in [13], the Gauss blur 

function psfGauss  proposed in [14] and the linear motion blur in [15]. In this paper, we choose the out-of-

focus blur with radius 9 which is generated by MATLAB function 18/)9,9(ones , the Gauss blur with 

7dim  and 2s  which is generated by MATLAB function, and the linear motion blur with 7r  and 

45  which is generated by MATLAB function )45,7,'('motionfspecial . 

     
(a) Lena                         (b) Brain                          (c) Butterfly 

Figure 1: Original images 

In Table 1, the PSNR and SSIM values of three methods are presented, which shows that our method yields a 

better restoration result. Therefore, we conclude that the proposed method performs better than the tight frame 

method.  

Table 1: Output of the experiments 

Image blur PSNR SSIM 

Frame Proposed Frame Proposed 

Lena Gauss 26.47 26.67 0.7909 0.7922 

Brain Defocus 27.78 27.85 0.7583 0.7928 

Butterfly Motion 27.98 28.11 0.9086 0.9097 
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In Fig. 2, the original image, the degraded image and the restoration images of the Lena image by two methods 

are exhibited. 

    
                      (a) Lena                   (b) Degraded                       (c) Frame                      (d) Proposed 

Figure 2: Restoration results for the image “Lena” under the Gauss blur. 

( 1/10005.0     ) 

In Fig 3, the original image, the degraded image and the restoration images of the Brain image by two methods 

are exhibited.  

    
           (a) Brain                    (b) Degraded                      (c) Frame                     (d) Proposed 

Figure 3: Restoration results for the image “Brain” under the Out-of-focus blur 

( 1/12007.0     ) 

In Fig 4, the original image, the degraded image and the restoration images of the Butterfly image by two 

methods are exhibited. 

    
         (a) Butterfly                (b) Degraded                     (c) Frame                    (d) Proposed 

Figure 4: Restoration results for the image “Butterfly” under the Motion blur 

( 1/1001.0     ) 
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