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Abstract In a dynamic frequency regime, the effect of irradiation on the bulk and surface recombination 

parameters (Sf, Sb) occurring in the bifacial photovoltaic cell monochromatically back-illuminated is presented. 

From the resolution of the continuity equation, through the photocurrent plots, we end with the expressions of Sf 

and Sb. Equivalent electric models related to Sf and Sb are deduced from Nyquist and Bode diagrams of the 

latter for some irradiation energy values. And subsequently, a method for determining equivalent electric 

parameters is proposed. 
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1. Introduction 

Solar cells are subject to a constant bombardment of high subatomic energy particles (electrons and protons). 

Thus, Electronic systems operating in space are exposed to radiation in the form of energetic charged particles, 

such as protons and heavy ions [1]. Indeed, irradiation of these cells generates atomic displacements within the 

material. Point defects resulting from these displacements trap the minority electric charge carriers produced by 

the illumination, which reduces the collection efficiency of the charges and alters the electrical characteristics of 

the cells (maximum power Pm, short circuit current JSC and voltage in open circuit VOC) [2]. Researchers have 

thus always carried out extensive studies in order to control and improve the behaviour of solar cells in such a 

hostile (irradiated) environment [3]. 

In this paper, the study deals with the impact of irradiation on the recombination parameters of a backside 

illuminated (BSI) bifacial photovoltaic cell under monochromatic light. First, we make a theoretical study to 

bring out all the mathematical equations for this type of photovoltaic cell. Then, using Nyquist and Bode 

diagrams [4-5], we put forward equivalent electrical model [6] for a few irradiation energy values. And in the 

end, a method for determining electric parameters relating to surface recombination velocities Sf and Sb will be 

proposed. 

2. Theoretical Study 

Our solar cell is made up of polycrystalline silicon [7-10], n
+
-p-p+ type [11-12], with Back Surface Field (BSF) 

[13-14] whose structure is shown in the following figure. 
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Figure 1: An n+-p-p+ structure of a silicon solar cell: backside illumination 

This work is carried out with the assumptions that: 

 the contribution of the emitter is neglected,  

 the base is a quasi-neutral base (QNB)   

 we use one-dimensional mathematical model. The origin is taken at the junction.  

From these assumptions, the continuity equation is given in the following equation. 
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G (x, t) and 𝛿 (x, t) are respectively the global generation rate and the excess minority density carriers at 

position x and time t and can be written in the form as follows [15-19]: 

G (𝑥, t) = g (𝑥)𝑒𝑖𝑤𝑡   et 𝛿(𝑥, 𝑡) =  𝛿(𝑥)𝑒𝑖𝑤𝑡             (2) 

where, )(xg  and )(x  typify the spatial components, 
tie 
 the temporal component. Inserting equation (2) in 

equation (1) one obtains:  
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for this type of solar cell, the spatial component of the minority carrier generation rate is given by the expression 

(4): 

)(xg =𝛼𝐼0 1 − 𝑅 𝑒−𝛼 𝐻−𝑥    
    (4) 

L is the complex diffusion length [20]; () is the monochromatic optical absorption coefficient [21] at the 

wavelength ; R () is the reflection coefficient of the material at the wavelength ; H the thickness of the base. 

D is the complex diffusion coefficient;  is the angular frequency; τ is the average lifetime of the minority 

carriers obtained from the empirical relation as a function of the damage coefficient kl and the irradiation flux 

[22-23]. 
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The solution of the continuity equation is given by the following expression: 

)(exp.
).1.(

).1.(.
sinhcosh)(

22

2

0 xH
LD

LRI

L

x
B

L

x
Ax 


























 












          (6) 

Where coefficients A and B are to be determined from the boundary conditions at the junction and to the rear 

side [24]. 

 At the Junction (x=0) 
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 At the backside (x=H) 
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all calculation done, we get. 
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Where fS and BS  are respectively the recombination speed at the junction and to the rear side. 

 

3. Photocourant Density 

Knowing the expression of the minority density carriers, one can determine the expression of the photocurrent 

density by using the Fick law. It is given by the following equation: 
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all calculation done, we get: 
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(12) 

Where q is the charge of the electron and D the complex diffusion coefficient. 

The photocurrent density according to the recombination velocity junction Sfj and to backside Sb can be seen in 

figure 2. 

 
(a) 

 
(b) 

Figure 2: Modulus of the photocurrent density versus the junction recombination velocity Sfj (a) and the 

backside recombination velocity Sbm (b) 

m98.0    ; srad /106 ; 
11.15  sMeVkl  MeV150  

Plots of photocurrent density versus the recombination velocities (Sf and Sb) has a bearing for the high values of 

Sf (Sf≥10
5
cm / s) and Sb (Sb≥10

5
cm / s). Therefore, the zero gradient at that points lead to the expressions of 

the intrinsic recombination velocities through the junction and through the backside of the cell. 

 

4. Expressions for Sf and Sb  

Solving the equations (13) and (14) lead to the expressions of the recombination velocities Sf and Sb 

respectively [25-26]. 
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After all calculation, one find: 
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5. Bode and Nyquist Plots Relating to Sb and Sb 

The Bode and Nyquist plots [27-29] are used here to evaluate the impact of irradiation on the recombination 

velocities. And also, to describe the electrical phenomena of the intrinsic recombination velocities at the 

Junction Sf and to the backside Sb. 

5.1. Bode Plots 

Plots Bellow illustrate how the irradiation energy affect the recombination parameters. 

 
(a) 

 

 
(b) 

 

 

                               (c) (d) 

Figure 3: Bode plots for various irradiation values m98.0   ; 
11.15  sMeVkl  

Plots (a) and (b) show that the modulus of recombination velocities (Sf and Sb) is insensitive to the angular 

frequency as long as the latter is less than the quasi-static cut-off pulsation ωc, and beyond this pulsation, the 

modulus of Sb and Sf, very sensitive to the frequency, decreases abruptly according to the pulsation (dynamic 

frequency regime). High frequencies lead to small values of the recombination velocities, thus less losses of 
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minority carriers at the emitter-base and at the backside. Moreover, the effect of irradiation is more perceptible 

when operating in quasi-static regime and the more it increases, less important the recombination. Furthermore, 

the increase in irradiation results in an increase in the value of the cut-off frequency (boundary frequency 

between the quasi-static regime and the dynamic frequency regime, fig.a). 

Figure (d) shows:  

 For any given irradiation energy greater than or equal to 63 MeV, there is a pulsation below which 

the phase of the recombination velocity is nil. Beyond that pulsation, the phase decreases and 

remains negative so as to materialize a predominance of capacitive effects over inductive effects. 

 For any irradiation energy, less than or equal to 62 MeV, the phase of the recombination velocity 

remains positive nearby the resonance and then becomes negative for higher frequencies: this 

describes both the inductive and capacitive phenomena of the backside recombination velocity. 

The graph (c), shows that, regardless of the applied irradiation energy, there's always a predominantly capacitive 

effect. 

5.2. Nyquist Plots for Sf and Sb 

The impact of irradiation on the Nyquist plots is shown in the graphs below 

(a)                                                     
                                     (b) 

 

(c) 

Figure 4: Nyquist plots for Sf (a) and for Sb (b, c) for various irradiation energy values m98.0   ; 

11.15  sMeVkl  

On these plots, you can see that they all are semi-closed loop curves of variable diameters depending on the 

value of the irradiation. Indeed, the greater the energy the greater the radius, characterizing both the capacitive 

and inductive phenomena of the recombination velocities Sb and Sf. 
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In concordance with the Bode diagram of Figure 3 (d), one can notice see that there is an energy above which 

the capacitive effects predominate over the inductive effects and below which these two effects coexist (Figure 

c). 

6. Equivalent Electrical Circuit Model for an Irradiation Energy Equal to 50 MeV 

Based on the Nyquist and Bode plots, some equivalent electric models for the recombination velocities Sf and 

Sb at Փ=50 MeV are proposed. And subsequently, a graphical method for determining equivalent electric 

parameters will be proposed too. 

6.1. Junction Recombination Velocity Sf 

An electrical circuit can be proposed based on the imaginary part of the junction recombination velocity vs its 

real part (see table 1 

 

 

Table 1: equivalent electric circuit of Sf; m98.0   ; 
11.15  sMeVkl  

(a) 

(b) 

(c) 

The storage, the losses due to the recombination of the excess minority carriers through the emitter-base 

interface, can be electrically designed by a capacitance C, a shunt resistor Rp and a series resistance Rs 

respectively. 

The equivalent electrical circuit (c) describes the electric behaviour of the recombination velocity through the 

junction Sf. The losses due to the recombination of the carriers through the emitter-base are assimilated to 

resistors. 

Ceq is the capacitance of a capacitor which characterizes the capacitive effects of the recombination velocity Sf; 

Rpeq, is a shunt resistance and Rseq is a series resistance. The values of the series resistance Rseq (ω → 0 or ω → 

∞), shunt Rpeq, (from the cut-off frequency giving Rpéq / 2) can be evaluated using diagram (b). Knowing the 

value of the cut-off frequency, we can be deduced the value of the photogenerated minority carriers’ lifetime 

and the capacitance from the relations  = 1/c et  = Rpeq.Ceq [30-31]. 

6.2. Backside Recombination Velocity Sb 

An electric circuit can be proposed based on the imaginary part of the backside recombination velocity vs its 

real part (see table 2). 

Table 2: equivalent electric circuit method for Sb m98.0   ; 
11.15  sMeVkl  
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(a) 

 
(b) 

Rp1éqRp2éq

Céq
Léq

Rséq

 
(c) 

Using the Nyquist plot (b), the equivalent electrical circuit (c) of the table2 describes the capacitive and 

inductive phenomena observed from the phase of Sb (a). Ceq represents the capacitive effects and Leq the 

inductive effects. Rp1eq is a shunt resistance estimated when the excitation pulse ω → 0 and ω → ∞ .and Rp2eq 

a shunt resistance corresponding to the diameter of the semicircle of the capacitive phenomenon. 

We note that Rp2eq is less than Rp1eq but still when Rp2eq is zero, the inductive effects prevail. It is the same 

when the pulsation ω˂10
3
 rad / s. And in this frequency domain, the imaginary of Sb vs the logarithm of the 

pulsation is a straight line whose slope represents the equivalent inductance Leq (diagram c). 

6.3. Graphical method for determination of electric parameters (Rseq
,
 Rpeq and Leq) 

The method consists of representing the modulus of the series and shunt resistances vs the real part of Sf (or Sb). 

For each value of Sfp or Sfs (Sbs or Sbp) obtained, we proceed its projection on the curves then the y-intercepts 

(modulus of Rseries or Rshunt) give the values of Rseq or Rpeq. 

Whereas the slope of the imaginary of Sb vs the pulsation (ω˂103) graph (c) (Table 3) gives the equivalent 

inductance Leq, graph (c) Table 2. 

Example: recombination velocity Sf 

Table 3: evaluation method of electric parameters (Rseq
,
 Rpeq and Leq) 
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(a) 

 

(b) 

 
(c) 

 

For each value of Sfs or Sfp obtained from the Nyquist plot (Table 1) there is corresponding value of Rseq or 

Rpeq. Indeed: 

• The diameter of the semicircle Sfp (diagrams b, Table 1) lead to the shunt resistance Rpeq (diagram c, 

table 1); 

• Sfs, determined when ω → 0 or ω → ∞, lead to the equivalent series resistance Rseq (graph c Table 

1). 

  Knowing the value of the cut-off frequency, we can deduce the equivalent electrical capacitance from the 

equation  = 1/c et  = Rpeq.Ceq. 

 The table 4 below gives values of the parameters mentioned above for three (3) irradiation energy values. 

Table 4: values of Electric parameters 

Փ (MeV) |Sfs|(cm/s) |Sfp| (cm/s) Rséq(Ω/cm²) Rpéq(Ω/cm²) Céq(µF/cm²) 

50 69,314 993,086 13,988 13562 2,331.10
-2 

150 66,392 926,71 14,964 15066 2,099.10
-2

 

250 64,055 874,825 15,866 16517 1,914.10
-2

 

when the irradiation energy values increase, the resistances Rseq and Rpeq increase whereas the equivalent 

electrical capacitance decreases. This is due to the fact that the irradiation damages the material causing an 

increase in losses of minority carriers. The intrinsic properties of the solar cell are damaged; Resulting in poor 

cell quality. 
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The decrease of the capacitance was predictable since the capacitance is inversely proportional to the shunt 

resistance (which increases) according to the expression Ceq = 1 / (Rpeq * ωc). In fact, the diffusion capacitance 

decreases since there are few of minority carriers diffusing in volume [32-33]. 

 

7. Conclusion 

The recombination velocities of the bifacial silicon solar cell are very sensitive to the irradiation energy. Indeed, 

an increase in irradiation causes more losses of minority carriers. The negative impact of irradiation particles is 

more accentuated for the greater energy values. Then it is clear that even with the low values of energy, for a 

prolonged exposure to irradiations, the damage resulting from the impact of irradiation will be significant. 
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