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Abstract The unsteady MHD fixed convective oscillatory flow through a porous medium filled in a vertical 

channel with heat and mass transfer was analyzed. The two parallel stationary walls of the channel are distance 

d apart. The analytical solution of the governing equations is obtained. The consequence of the flow parameters 

on velocity, temperature and concentration field are demonstrated through graphs. The skin friction, Nusselt 

number and Sherwood numbers were obtained and tabulated. It was found out that the results of this problem 

have an excellent agreement with analytical prediction. 
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Introduction 

In recent years, the flows of fluid through porous media are of principal interest because these are quite 

prevalent in nature. Such flows have attracted the attention of a number of scholars due to their application in 

many branches of science and technology, in the field of agriculture engineering to study the underground water 

resources, seepage of water in river-beds, in petroleum technology to study the movement of natural gas, oil and 

water through oil reservoirs, in chemical engineering for filtration and purification processes. The convection 

problem in porous medium has also important applications in geothermal reservoirs and geothermal energy 

extractions.  

Magnetohydrodynamic (MHD) is going through a period of great enlargement and differentiation of subject 

matter. The interest in magnetohydrodynamic (MHD) convection with heat transfer is renewed due to its 

importance in the design of MHD generators, and accelerators in geophysics, in the design of underground 

water and energy storage systems, soil sciences, astrophysics and so on. Several scholars have shown their 

interest in MHD flows because of their varied applications. Singh (2011) [1] obtained an exact solution of an 

oscillatory MHD flow in a channel filled with porous medium. Rahman and Sarkar (2004) [2] analyzed the 

unsteady MHD flow of a dusty visco-elastic Oldroyd fluid under time varying body force through a rectangular 

channel. Attia and Ewis (2010) investigated an unsteady MHD Couette flow with heat transfer of a visco-elastic 

fluid under exponential decaying pressure gradient [3]. Very recently, Choudhary and Das (2012) [4] extended 

the problem of Makinde and Mhone (2005) [5] by taking into account the visco-elastic fluid. Choudhary and 

Das (2012) carried along all the mistakes of Makinde and Mhone (2005) which have examined forced 

convection in such channels [4-5].  

Hence, the aim of the present study is to analyze the very important physical problem of unsteady flow, 

incompressible and finitely electrically conducting fluid flow through a porous medium bounded by two vertical 

plates in the presence of heat radiation and uniform transverse magnetic field, and heat and mass transfer. 

Mathematical Formulation  
An oscillatory flow of an unsteady fluid, incompressible and electrically conducting fluid in a vertical channel 

filled with porous medium is considered. The two parallel stationary walls of the channel are distance 𝑑 apart. 

Choose a Cartesian coordinate system (𝑋*,𝑌*) where 𝑋*-axis lies along the centre line of the channel and 𝑌*-

axis is perpendicular to the parallel plates. A magnetic field, B0, of uniform strength is applied along Y*-axis. 

The magnetic Reynolds number is assumed small enough so that the induced magnetic field is negligible. Hall 

effect, electrical and polarization effects are also neglected. All physical quantities are independent of 𝑥* for this 
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problem of fully developed laminar flow. Under the usual Boussinesq approximation the flow is governed by 

the following equations  

Momentum equation; 

𝜕𝑢∗

𝜕𝑡∗
= −

1

𝜌

𝜕𝑝∗

𝜕𝑥∗
+ 𝜗1

𝜕2𝑢∗

𝜕𝑦∗2
− 𝜗1

𝑢∗

𝑘∗
−
𝜎𝐵0

2𝑢∗

𝜌
+ 𝑔𝛽𝑇∗ + 𝑔𝐵∗𝐶∗                                                     (1) 

Energy equation; 

               
 𝜕𝑇 ∗

𝜕𝑡 ∗
=

𝑘

𝜌𝑐𝑝

𝜕2𝑇∗

𝜕𝑦 ∗2 −
1

𝜌𝑐𝑝

𝜕𝑞 ∗

𝜕𝑦 ∗
                                                                                                                       (2)  

Concentration equation; 

𝜕𝑐∗

𝜕𝑡∗
= 𝐷

𝜕2𝑐∗

𝜕𝑦∗2
                                                                                                                                       (3) 

where in momentum equation (1) term on the L. H. S. is the inertial force and on the R. H. S. the terms 

respectively represent imposed pressure gradient, viscous force, viscoelastic term, pressure drop across the 

porous matrix, Lorentz force due to magnetic field 𝐵0 and the buoyancy force due to temperature difference of 

the plates. In energy equation (2) term on the L. H. S. is the heat due to convection and on the R. H. S. the terms 

respectively represent conduction heat and radiation heat. 

The boundary conditions of the problem are  

𝑢∗ = 0, 𝑇∗ = 𝑇𝑜𝑒
𝑖𝜔 ∗𝑡∗, 𝐶∗ = 𝐶𝑜𝑒

𝑖𝜔 ∗𝑡∗  𝐴𝑡  𝑦∗ =
𝑑

2
                                                                         (4) 

𝑢∗ = 0, 𝑇∗ = 0, 𝐶∗ = 0  𝐴𝑡  𝑦∗ = −
𝑑

2
                                                                                                (5) 

where𝑢* is the axial velocity, 𝑇* is the temperature, 𝑡* is the time, 𝑝* is the pressure, 𝜌is the density, is the 

kinematic viscosity,   is the electric conductivity, pc  is the specific heat at constant pressure, 𝐾* is the 

permeability of the porous medium, 𝜔* is the frequency of oscillations. Here ‘*’ stands for the dimensional 

quantities.  

Now introducing the following non-dimensional quantities 

𝑥 =
𝑥∗

𝑑
, 𝑦 =

𝑦∗

𝑑
, 𝑢 =

𝑢∗

𝑈
, 𝑡 =

𝑡∗𝑈

𝑑
,𝜔 =

𝜔∗𝑑

𝑈
, 𝑃 =

𝑝∗

𝜌𝑈2
 , 𝑇∗ = 𝑇 − 𝑇𝑜  , 𝐶∗ = 𝐶 − 𝐶𝑜  , 𝑆𝑐 =

𝜗1

𝐷
 

 From equation (1) to (4),we obtain equation in dimensionless form as 

𝑅𝑒
𝜕𝑢

𝜕𝑡
= −𝑅𝑒

𝜕𝑝

𝜕𝑥
+
𝜕2𝑢

𝜕𝑦2
− ((

1

 𝐷𝑎
)2 +  𝐵𝑜𝑑 

𝜎

𝜗1𝜌
)2 𝑢 + 𝐺𝑟𝑇 + 𝐺𝑐𝐶                                        (6) 

𝑃𝑒
𝜕𝑇

𝜕𝑡
=
𝜕2𝑇

𝜕𝑦2
+ 𝑁2𝑇                                                                                                                                     7  

𝜕𝐶

𝜕𝑡
=

1

𝑆𝑐

𝜕2𝐶

𝜕𝑦 2                                                                                                                                                                     (8)  

With boundary conditions at 

𝑢 = 0, 𝑇 = 𝑒𝑖𝜔𝑡   𝐴𝑡  𝑦 =
1

2
                                                                                                                                        (9)  

𝑢 = 0 , 𝑇 = 0, 𝐴𝑡  𝑦 = −
1

2
                                                                                                                                       (10)  

Where 𝐺𝑟 (Grashof number) =
𝛽𝑇

𝑜𝑑2

𝜗1𝑈
, 

𝑃𝑒(Peclet number) = 
𝜌𝑐𝑝𝑈𝑑

𝑘
 

𝑅𝑒(Reynold number) = 
𝑈𝑑

𝜗1
  

𝐻(Hartmann number) = 𝐵𝑜𝑑 
𝜎

𝜇
 

𝐷𝑎 (Darcy number) = 
𝑘∗

𝑑2  

𝑠(Porous medium shape factor parameter) =
1

 𝐷𝑎
 

N  (Radiation parameter) = 2𝛼
𝑑

 𝑘
 

The imposed pressure gradient oscillating with time is of the oscillatory internal flow in the channel is of the 

form  

−
𝜕𝑝

𝜕𝑥
= 𝜆𝑒𝑖𝜔𝑡                                                                      (11) 
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Method of Solution    

To solve equations (6),(7) and (8) under the boundary condition (9) and (10). We should assume for purely flow 

𝑢 𝑢, 𝑡 = 𝑢𝑜 𝑦 𝑒
𝑖𝜔𝑡 , 𝑇 𝑦, 𝑡 = 𝜃𝑜 𝑦 𝑒

𝑖𝜔𝑡 , 𝐶 𝑦, 𝑡 = 𝐶𝑜 𝑦 𝑒
𝑖𝜔𝑡  𝑎𝑛𝑑 −

𝜕𝑝

𝜕𝑥
= 𝜆𝑒𝑖𝜔𝑡                       (12) 

Substituting (12) into (6), (7) and (8), we obtain  

𝑢𝑜
′′  𝑦 − 𝐹𝑢𝑜 𝑦 = −𝑅𝑒𝜆 − 𝐺𝑟𝜃𝑜 𝑦 − 𝐺𝑐𝐶𝑜 𝑦 ,                                                                                               (13)  

𝜃𝑜
′′ 𝑦 − 𝐴𝜃𝑜 𝑦 = 0                                                                                                                                         (14) 

𝐶𝑜
′′ 𝑦 − 𝐷𝑗𝐶𝑜 𝑦 = 0                                                                                                                                                  (15)  

𝑊ℎ𝑒𝑟𝑒  𝐹 = 𝑆2 + 𝐻2 + 𝑖𝜔𝑅𝑒, 𝐴 = 𝑁2 + 𝑖𝜔𝑃𝑒, 𝑎𝑛𝑑 𝐷𝑗 = 𝑖𝜔𝑆𝑐     

The transformed boundary condition becomes 

𝑢0 = 0,   𝜃𝑜 = 1,   𝐶𝑜 = 1  𝐴𝑡  𝑦 =
1

2
                                                                                                                       (16)  

𝑢0 = 0,   𝜃𝑜 = 0,   𝐶𝑜 = 0  𝐴𝑡  𝑦 = −
1

2
                                                                                                                   (17)  

The ordinary differential equations (13), (14) and (15) are solved under the boundary conditions (16) and (17) 

and the solutions for the mean velocity, mean temperature and concentration fields are obtained respectively as 

follows  

𝑢0 𝑦 = 𝐶5𝑒
𝑚5𝑦 + 𝐶6𝑒

𝑚6𝑦 + 𝑘1 + 𝑘2𝑒
𝑚1𝑦 + 𝑘3𝑒

𝑚2𝑦 + 𝑘4𝑒
𝑚3𝑦 + 𝑘5𝑒

𝑚4𝑦                                     (18) 

𝜃0 𝑦 = 𝐶1𝑒
𝑚1𝑦 + 𝐶2𝑒

𝑚2𝑦                                                                                                                                                                                       (19) 

𝐶0 𝑦 = 𝐶3𝑒
𝑚3𝑦 + 𝐶4𝑒

𝑚4𝑦                                                                                                                                          (20)  
Therefore the solution for the velocity, temperature and concentration fields are  

𝑢 𝑦, 𝑡 =  𝐶5𝑒
𝑚5𝑦 + 𝐶6𝑒

𝑚6𝑦 + 𝑘1 + 𝑘2𝑒
𝑚1𝑦 + 𝑘3𝑒

𝑚2𝑦 + 𝑘4𝑒
𝑚3𝑦 + 𝑘5𝑒

𝑚4𝑦 𝑒𝑖𝜔𝑡          (21) 

𝜃 𝑦, 𝑡 =  𝐶1𝑒
𝑚1𝑦 + 𝐶2𝑒

𝑚2𝑦 𝑒𝑖𝜔𝑡                (22) 

𝐶 𝑦, 𝑡 =  𝐶3𝑒
𝑚3𝑦 + 𝐶4𝑒

𝑚4𝑦 𝑒𝑖𝜔𝑡                (23) 

The Skin Friction 

From the velocity field in equation (21) we can obtain the skin friction at the left wall as 

𝜏𝐿 =
𝜕𝑢

𝜕𝑦
⃒
𝑦=−

1

2

  

𝜏𝐿 =
𝜕𝑢

𝜕𝑦
=  𝑚5𝐶5𝑒

−
1
2
𝑚5 + 𝑚6𝐶6𝑒

−
1
2
𝑚6 + 𝑄′(𝑦) 𝑒𝑖𝜔𝑡                                                                              (24) 

 Where 𝑄 𝑦 = 𝑘1 + 𝑘2𝑒
𝑚1𝑦 + 𝑘3𝑒

𝑚2𝑦 + 𝑘4𝑒
𝑚3𝑦 + 𝑘5𝑒

𝑚4𝑦  

And the skin friction at the right wall is 

𝜏𝑅 =
𝜕𝑢

𝜕𝑦
⃒
𝑦=

1
2
 

𝜏𝑅 =
𝜕𝑢

𝜕𝑦
=  𝑚5𝐶5𝑒

1

2
𝑚5 +𝑚6𝐶6𝑒

1

2
𝑚6 + 𝑄′(𝑦) 𝑒𝑖𝜔𝑡                                                                                              (25)  

The Nusselt Number 

From the temperature field given in equation (22) the heat transfer coefficient Nu (Nusselt number) at the left 

wall is  

𝑁𝑢𝐿 =
𝜕𝜃

𝜕𝑦
⃒
𝑦=−

1

2

  

𝑁𝑢𝐿 =
𝜕𝜃

𝜕𝑦
=  𝑚1𝐶1𝑒

−
1
2
𝑚1 + 𝑚2𝐶2𝑒

−
1
2
𝑚2 𝑒𝑖𝜔𝑡                                                                                         (26) 

Heat transfer coefficient Nu (Nusselt number) at the right wall is 

𝑁𝑢𝑅 =
𝜕𝜃

𝜕𝑦
⃒
𝑦=

1

2

  

𝑁𝑢𝑅 =
𝜕𝜃

𝜕𝑦
=  𝑚1𝐶1𝑒

1

2
𝑚1 + 𝑚2𝐶2𝑒

1

2
𝑚2 𝑒𝑖𝜔𝑡 (27)  

The Sherwood Number 

From the concentration field given in equation (23) the Sh (shawood number) at the left wall is 𝑆ℎ𝐿 =
𝜕𝐶

𝜕𝑦
⃒
𝑦=−

1

2

 

𝑆ℎ𝐿 =
𝜕𝐶

𝜕𝑦
=  𝑚3𝐶3𝑒

−
1

2
𝑚3 + 𝑚4𝐶4𝑒

−
1

2
𝑚4 𝑒𝑖𝜔𝑡 (28)  

And the Sherwood number at the right wall is 

𝑆ℎ𝑅 =
𝜕𝐶

𝜕𝑦
⃒
𝑦=

1

2

        

𝑆ℎ𝑅 =
𝜕𝐶

𝜕𝑦
=  𝑚3𝐶3𝑒

1

2
𝑚3 + 𝑚4𝐶4𝑒

1

2
𝑚4 𝑒𝑖𝜔𝑡 (29)  
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Result and Disscussion 

The  problem  of  an  oscillatory  mixed  convection  MHD  flow  in  a  vertical  channel  filled with porous 

medium in the presence of a transverse uniform magnetic field and heat radiation is solved analytically. 

 The pressure gradient in the channel also oscillates with time. The velocity field, temperature and species 

concentration  are  evaluated numerically  and graphically  using MATLAB for the different values of Grashof  

number  Gr,  the Reynolds  number  Re,  porous  medium  shape  factor  parameter  s,  the  Hartmann  number  

H,  the Peclet  number  Pe,  radiation  parameter  N,  the  pressure  gradient, and  the  frequency  of oscillations. 

For  numerical  validation,  only  the  real  parts  of  the  results  are  considered.  The effects of these parameters 

are displayed through figures. 

The variations in the velocity field due to the increase of the Grashof number for heat transfer 𝐺𝑟  and Grashof 

number for mass transfer 𝐺𝑐  in figure 1 and figure 2 respectively. It is clear from the figure that the velocity 

decrease meaning that the flow retards as the Grashof number increases for heat transfer𝐺𝑟  and Grashof number 

for mass transfer 𝐺𝑐 . 

Figure 3 depicts the variation of Reynolds number 𝑅𝑒 on velocity profile 𝑢.It can be depicted that the velocity 

increases with increase in Reynold number𝑅𝑒. 

The effect of Hartmann number 𝐻on velocity profile is shown in figure 4. It is clear that the velocity decreases 

with increase in Hartmann number. This is true since the role of a magnetic field in a flow field is to suppress 

turbulence. 

Figure 5 shows the variation of frequency oscillation  𝜔 on velocity. It is evident that the velocity oscillates with 

increase in 𝜔. 

Figure 6 shows the effect of Schmidt number 𝑆𝑐 on species concentration. It can be seen that the species 

concentration increases with increase in Schmidt number. 

Figures 7 and 8 demonstrate respectively the variation radiation parameter 𝑁 and Peclect number 𝑃𝑒. It is 

demonstrated that increase in both the radiation parameter 𝑁 and Peclectnumber 𝑃𝑒 decrease the velocity profile 

of the flow field. 

Table 1 shows the variation of skin friction, Nusselt number and Sherwood number at different time 𝑡 with the 

flow parameters kept constant. 

 

 
Figure 1: Variation of velocity 𝑢 with different values of Grashof number 𝐺𝑟. 
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Figure 2: Variation of velocity 𝑢 with different values of Grashof number 𝐺𝑐. 

 

 
Figure 3: Variation of velocity 𝑢 with different values of Reynolds number 𝑅𝑒. 
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Figure 4: Variation of velocity 𝑢 with different values of Hartmann number 𝐻𝑎. 

 

 
Figure 5: Variation of velocity 𝑢 with different values of frequency of oscillation 𝜔. 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2
Effect of Hartmann number Ha on Velocity profile u

V
e
lo

c
it
y
 
u

y

 

 

Ha=1

Ha=2

Ha=3

Ha=4

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y

V
e
lo

c
it
y
 u

Effect of Frequency of Oscillations  on Velocity profile u

 

 

=1

=2

=3

=4



Magaji AS                                                 Journal of Scientific and Engineering Research, 2016, 3(3):590-598 

 

Journal of Scientific and Engineering Research 

596 

 

 
Figure 6: Variation of Species Concentration 𝐶 with different values of Schmidt number 𝑆𝑐. 

 
Figure 7: Variation of Temperature 𝜃 with different values of 𝑁. 
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Figure 8: Variation of Temperature 𝜃 with different values of Peclet number𝑃𝑒. 

Table 1: Variation of Skin friction, Nusselt number and Sherwood number at different time 𝑡 
𝒕 𝝉𝑳 𝝉𝑹 𝑵𝒖𝑳 𝑵𝒖𝑹 𝑺𝒉𝑳 𝑺𝒉𝑹 

0.0 −0.6385 −10.8738 0.9417 1.2928 0.1682 15.5540 

0.1 −1.5105 −10.8373 0.9249 2.4254 0.8184 20.2600 

0.3 −1.6216 −10.8238 0.4862 3.3996 0.8193 21.8382 

0.5 −9.7702 −10.8137 0.2505 4.3116 0.8227 21.3828 

0.7 −10.3714 −10.8038 0.1352 5.6083 0.8714 22.5509 

0.9 −11.9400 −10.7737 0.1133 5.6772 0.8832 22.6911 

1.0 −12.5069 −10.7638 0.9332 6.2958 0.8890 22.6986 

 

Summary and Conclusion 

The unsteady MHD fixed convective oscillatory flow through a porous medium filled in a vertical channel with 

heat and mass transfer was analyzed. The two parallel stationary walls of the channel are distance d apart. The 

analytical solution of the governing equations is obtained. The skin friction, Nusselt number and Sherwood 

numbers were obtained and tabulated.  

It was found out that high Hartmann number 𝐻 retards the velocity of the flow field. While the other flow 

parameter accelerates the velocity. 

Also, both the radiation parameter 𝑁 and Peclet number 𝑃𝑒 increase the temperature distribution of the flow 

field. 

The results of this problem have an excellent agreement with analytical prediction, meaning the flow is purely 

oscillatory. 
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